|
SIGMA, 2009, том 5, 093, 16 стр.
(Mi sigma439)
|
|
|
|
Эта публикация цитируется в 22 научных статьях (всего в 22 статьях)
Compact Riemannian Manifolds with Homogeneous Geodesics
Dmitrii V. Alekseevskiia, Yurii G. Nikonorovb a School of Mathematics and Maxwell Institute for Mathematical Studies, Edinburgh University, Edinburgh EH9 3JZ, United Kingdom
b Volgodonsk Institute of Service (branch) of South Russian State University of Economics and Service, 16 Mira Ave., Volgodonsk, Rostov region, 347386, Russia
Аннотация:
A homogeneous Riemannian space $(M=G/H,g)$ is called a geodesic orbit space (shortly, GO-space) if any geodesic is an orbit of one-parameter subgroup of the isometry group $G$. We study the structure of compact GO-spaces and give some sufficient conditions for existence and non-existence of an invariant metric $g$ with homogeneous geodesics on a homogeneous space of a compact Lie group $G$. We give a classification of
compact simply connected GO-spaces $(M=G/H,g)$ of positive Euler characteristic. If the group $G$ is simple and the metric $g$ does not come from a bi-invariant metric of $G$, then $M$ is one of the flag manifolds $M_1=SO(2n+1)/U(n)$ or $M_2=Sp(n)/U(1)\cdot Sp(n-1)$ and $g$ is any invariant metric on $M$ which depends on two real parameters. In both cases, there exists unique (up to a scaling) symmetric metric $g_0$ such that $(M,g_0)$ is the symmetric space $M=SO(2n+2)/U(n+1)$ or, respectively, $\mathbb{C}P^{2n-1}$. The manifolds $M_1$, $M_2$ are weakly symmetric spaces.
Ключевые слова:
homogeneous spaces, weakly symmetric spaces, homogeneous spaces of positive Euler characteristic, geodesic orbit spaces, normal homogeneous Riemannian manifolds, geodesics
DOI:
https://doi.org/10.3842/SIGMA.2009.093
Полный текст:
PDF файл (290 kB)
Полный текст:
http://emis.mi.ras.ru/journals/SIGMA/2009/093/
Список литературы:
PDF файл
HTML файл
Реферативные базы данных:
ArXiv:
0904.3592
Тип публикации:
Статья
MSC: 53C20; 53C25; 53C35 Поступила: 22 апреля 2009 г.; в окончательном варианте 20 сентября 2009 г.; опубликована 30 сентября 2009 г.
Язык публикации: английский
Образец цитирования:
Dmitrii V. Alekseevskii, Yurii G. Nikonorov, “Compact Riemannian Manifolds with Homogeneous Geodesics”, SIGMA, 5 (2009), 093, 16 pp.
Цитирование в формате AMSBIB
\RBibitem{AleNik09}
\by Dmitrii V.~Alekseevskii, Yurii G.~Nikonorov
\paper Compact Riemannian Manifolds with Homogeneous Geodesics
\jour SIGMA
\yr 2009
\vol 5
\papernumber 093
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma439}
\crossref{https://doi.org/10.3842/SIGMA.2009.093}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2559668}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000271092200029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896060374}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/sigma439 http://mi.mathnet.ru/rus/sigma/v5/p93
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
Tóth G.Z., “On Lagrangian and Hamiltonian systems with homogeneous trajectories”, J. Phys. A, 43:38 (2010), 385206, 19 pp.
-
Cohen N., Grama L., Negreiros C.J.C., “Equigeodesics on flag manifolds”, on J. Math., 37:1 (2011), 113–125
-
Berestovskii V.N., Nikitenko E.V., Nikonorov Yu.G., “Classification of generalized normal homogeneous Riemannian manifolds of positive Euler characteristic”, Differential Geom Appl, 29:4 (2011), 533–546
-
Jovanovic B., “Geodesic Flows on Riemannian g.o. Spaces”, Regular & Chaotic Dynamics, 16:5 (2011), 504–513
-
Yu. G. Nikonorov, “Geodesic orbit Riemannian metrics on spheres”, Владикавк. матем. журн., 15:3 (2013), 67–76
-
Nikonorov Yu.G., “Geodesic Orbit Manifolds and Killing Fields of Constant Length”, Hiroshima Math. J., 43:1 (2013), 129–137
-
Berestovskii V.N., Gorbatsevich V.V., “Homogeneous Spaces With Inner Metric and With Integrable Invariant Distributions”, Anal. Math. Phys., 4:4 (2014), 263–331
-
Yan Z., Deng Sh., “Finsler Spaces Whose Geodesics Are Orbits”, Differ. Geom. Appl., 36 (2014), 1–23
-
Nikonorov Yu.G., “Killing Vector Fields of Constant Length on Compact Homogeneous Riemannian Manifolds”, Ann. Glob. Anal. Geom., 48:4 (2015), 305–330
-
Nikolayevsky Y., “Totally Geodesic Hypersurfaces of Homogeneous Spaces”, Isr. J. Math., 207:1 (2015), 361–375
-
Berestovskii, V. N.; Gorbatsevich, V. V., “Homogeneous spaces with inner metric and with integrable invariant distributions”, Journal of Mathematical Sciences (United States), 207:3 (2015), 410-466
-
Arvanitoyeorgos A., Wang Yu., Zhao G., “Riemannian G.O. Metrics in Certain M-Spaces”, Differ. Geom. Appl., 54:A (2017), 59–70
-
Nikonorov Yu.G., “On the Structure of Geodesic Orbit Riemannian Spaces”, Ann. Glob. Anal. Geom., 52:3 (2017), 289–311
-
Arvanitoyeorgos A., Wang Yu., “Homogeneous Geodesics in Generalized Wallach Spaces”, Bull. Belg. Math. Soc.-Simon Steven, 24:2 (2017), 257–270
-
Dusek Z., “Homogeneous Geodesics and G.O. Manifolds”, Note Mat., 38:1 (2018), 1–15
-
Calvaruso G., Zaeim A., “Four-Dimensional Pseudo-Riemannian G.O. Spaces and Manifolds”, J. Geom. Phys., 130 (2018), 63–80
-
Chen H., Chen Zh., Wolf J.A., “Geodesic Orbit Metrics on Compact Simple Lie Groups Arising From Flag Manifolds”, C. R. Math., 356:8 (2018), 846–851
-
Xu M., “Geodesic Orbit Spheres and Constant Curvature in Finsler Geometry”, Differ. Geom. Appl., 61 (2018), 197–206
-
Arvanitoyeorgos A., Wang Yu., Zhao G., “Riemannian M-Spaces With Homogeneous Geodesics”, Ann. Glob. Anal. Geom., 54:3 (2018), 315–328
-
Gordon C.S., Nikonorov Yu.G., “Geodesic Orbit Riemannian Structures on R-N”, J. Geom. Phys., 134 (2018), 235–243
-
Nikolayevsky Y., Nikonorov Yu.G., “On Invariant Riemannian Metrics on Ledger-Obata Spaces”, Manuscr. Math., 158:3-4 (2019), 353–370
-
Nikonorov Yu.G., “On Left-Invariant Einstein Riemannian Metrics That Are Not Geodesic Orbit”, Transform. Groups, 24:2 (2019), 511–530
|
Просмотров: |
Эта страница: | 349 | Полный текст: | 76 | Литература: | 31 |
|