RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2010, Volume 6, 047, 13 pages (Mi sigma504)  

This article is cited in 7 scientific papers (total in 7 papers)

Translation-Invariant Noncommutative Renormalization

Adrian Tanasaab

a Centre de Physique Théorique, CNRS, UMR 7644, École Polytechnique, 91128 Palaiseau, France
b Institutul de Fizică şi Inginerie Nucleară Horia Hulubei, P. O. Box MG-6, 077125 Măgurele, România

Abstract: We review here the construction of a translation-invariant scalar model which was proved to be perturbatively renormalizable on Moyal space. Some general considerations on nonlocal renormalizability are given. Finally, we present perspectives for generalizing these quantum field theoretical techniques to group field theory, a new setting for quantum gravity.

Keywords: noncommutative quantum field theory; Moyal space; locality; translation-invariance

DOI: https://doi.org/10.3842/SIGMA.2010.047

Full text: PDF file (298 kB)
Full text: http://emis.mi.ras.ru/journals/SIGMA/2010/047/
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1003.4877
MSC: 81T18; 81T75
Received: March 25, 2010; in final form May 24, 2010; Published online June 8, 2010
Language:

Citation: Adrian Tanasa, “Translation-Invariant Noncommutative Renormalization”, SIGMA, 6 (2010), 047, 13 pp.

Citation in format AMSBIB
\Bibitem{Tan10}
\by Adrian Tanasa
\paper Translation-Invariant Noncommutative Renormalization
\jour SIGMA
\yr 2010
\vol 6
\papernumber 047
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma504}
\crossref{https://doi.org/10.3842/SIGMA.2010.047}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2725036}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000278475600012}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857310528}


Linking options:
  • http://mi.mathnet.ru/eng/sigma504
  • http://mi.mathnet.ru/eng/sigma/v6/p47

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Axel de Goursac, “On the Origin of the Harmonic Term in Noncommutative Quantum Field Theory”, SIGMA, 6 (2010), 048, 20 pp.  mathnet  crossref  mathscinet
    2. Tanasa A., “Combinatorial Hopf algebras in (noncommutative) quantum field theory”, Romanian J. Phys., 55:9–10 (2010), 1142–1155  mathscinet  zmath  isi
    3. Ardalan F., Sadooghi N., “Translational-invariant noncommutative gauge theory”, Phys. Rev. D, 83:2 (2011), 025014  crossref  adsnasa  isi  elib  scopus
    4. Tanasa A., “Multi-Orientable Group Field Theory”, J. Phys. A-Math. Theor., 45:16 (2012), 165401  crossref  mathscinet  zmath  adsnasa  isi  scopus
    5. Ardalan F., Arfaei H., Ghasemkhani M., Sadooghi N., “Gauge Invariant Cutoff Qed”, Phys. Scr., 87:3 (2013), 035101  crossref  zmath  adsnasa  isi  scopus
    6. de Goursac A., “Noncommutative Supergeometry and Quantum Supergroups”, Xxxth International Colloquium on Group Theoretical Methods in Physics (Icgtmp) (Group30), Journal of Physics Conference Series, 597, IOP Publishing Ltd, 2015, 012028  crossref  isi  scopus
    7. Baloitcha E., Lahoche V., Samary D.O., “Energy Momentum Tensor For Translation Invariant Renormalizable Noncommutative Field Theory”, Eur. Phys. J. Plus, 133:12 (2018), 515  crossref  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:203
    Full text:20
    References:29

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019