Общая информация
Последний выпуск

Поиск публикаций
Поиск ссылок

Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS


Персональный вход:
Запомнить пароль
Забыли пароль?

SIGMA, 2010, том 6, 052, 22 страниц (Mi sigma509)  

Эта публикация цитируется в 22 научных статьях (всего в 22 статьях)

Quantum Fields on Noncommutative Spacetimes: Theory and Phenomenology

Aiyalam P. Balachandrana, Alberto Ibortb, Giuseppe Marmocd, Mario Martonecad

a Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA
b Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
c INFN, Via Cinthia I-80126 Napoli, Italy
d Dipartimento di Scienze Fisiche, University of Napoli

Аннотация: In the present work we review the twisted field construction of quantum field theory on noncommutative spacetimes based on twisted Poincaré invariance. We present the latest development in the field, in particular the notion of equivalence of such quantum field theories on a noncommutative spacetime, in this regard we work out explicitly the inequivalence between twisted quantum field theories on Moyal and Wick–Voros planes; the duality between deformations of the multiplication map on the algebra of functions on spacetime $\mathscr F(\mathbb R^4)$ and coproduct deformations of the Poincaré–Hopf algebra $H\mathscr P$ acting on $\mathscr F(\mathbb R^4)$; the appearance of a nonassociative product on $\mathscr F(\mathbb{R}^4)$ when gauge fields are also included in the picture. The last part of the manuscript is dedicated to the phenomenology of noncommutative quantum field theories in the particular approach adopted in this review. CPT violating processes, modification of two-point temperature correlation function in CMB spectrum analysis and Pauli-forbidden transition in $\mathrm Be^4$ are all effects which show up in such a noncommutative setting. We review how they appear and in particular the constraint we can infer from comparison between theoretical computations and experimental bounds on such effects. The best bound we can get, coming from Borexino experiment, is $\gtrsim10^{24}$ TeV for the energy scale of noncommutativity, which corresponds to a length scale $\lesssim 10^{-43}$ m. This bound comes from a different model of spacetime deformation more adapted to applications in atomic physics. It is thus model dependent even though similar bounds are expected for the Moyal spacetime as well as argued elsewhere.

Ключевые слова: noncommutative spacetime; quantum field theory; twisted field construction; Poincaré–Hopf algebra


Полный текст: PDF файл (396 kB)
Полный текст:
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

ArXiv: 1003.4356
Тип публикации: Статья
MSC: 81R50; 81R60
Поступила: 24 марта 2010 г.; в окончательном варианте 8 июня 2010 г.; опубликована 21 июня 2010 г.
Язык публикации: английский

Образец цитирования: Aiyalam P. Balachandran, Alberto Ibort, Giuseppe Marmo, Mario Martone, “Quantum Fields on Noncommutative Spacetimes: Theory and Phenomenology”, SIGMA, 6 (2010), 052, 22 pp.

Цитирование в формате AMSBIB
\by Aiyalam P.~Balachandran, Alberto Ibort, Giuseppe Marmo, Mario Martone
\paper Quantum Fields on Noncommutative Spacetimes: Theory and Phenomenology
\jour SIGMA
\yr 2010
\vol 6
\papernumber 052
\totalpages 22

Образцы ссылок на эту страницу:

    ОТПРАВИТЬ: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Andrzej Borowiec, Anna Pachol, “$\kappa$-Minkowski Spacetimes and DSR Algebras: Fresh Look and Old Problems”, SIGMA, 6 (2010), 086, 31 pp.  mathnet  crossref  mathscinet
    2. Gromov N.A., “Possible quantum kinematics. II. Nonminimal case”, J. Math. Phys., 51:8 (2010), 083515, 12 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    3. Balachandran A.P., Joseph A., Padmanabhan P., “Non-Pauli Transitions from Spacetime Noncommutativity”, Phys. Rev. Lett., 105:5 (2010), 051601, 4 pp.  crossref  mathscinet  adsnasa  isi  elib  scopus
    4. Haghighat M., Okada N., Stern A., “Location and direction dependent effects in collider physics from noncommutativity”, Phys. Rev. D, 82:1 (2010), 016007, 6 pp.  crossref  mathscinet  adsnasa  isi  elib  scopus
    5. Balachandran A.P., Ibort A., Marmo G., Martone M., “Covariant quantum fields on noncommutative spacetimes”, Journal of High Energy Physics, 2011, no. 3, 057  crossref  mathscinet  zmath  isi  scopus
    6. Balachandran A.P., Ibort A., Marmo G., Martone M., “Quantum geons and noncommutative spacetimes”, Gen Relativity Gravitation, 43:12 (2011), 3531–3567  crossref  mathscinet  zmath  adsnasa  isi  scopus
    7. Balachandran A.P., Padmanabhan P., de Queiroz A.R., “Lehmann-Symanzik-Zimmermann S-matrix elements on the Moyal plane”, Phys Rev D, 84:6 (2011), 065020  crossref  adsnasa  isi  elib  scopus
    8. Chandra N., “Time-dependent transitions with time-space noncommutativity and its implications in quantum optics”, Journal of Physics A-Mathematical and Theoretical, 45:1 (2012), 015307  crossref  mathscinet  zmath  adsnasa  isi  scopus
    9. Florian Girelli, Franz Hinterleitner, Seth A. Major, “Loop Quantum Gravity Phenomenology: Linking Loops to Observational Physics”, SIGMA, 8 (2012), 098, 73 pp.  mathnet  crossref  mathscinet
    10. Dupuis M., Girelli F., Livine E.R., “Spinors Group Field Theory and Voros Star Product: First Contact”, Phys. Rev. D, 86:10 (2012), 105034  crossref  adsnasa  isi  scopus
    11. Devi Y.Ch., Ghosh Kumar Jang Bahadur, Chakraborty B., Scholtz F.G., “Thermal Effective Potential in Two- and Three-Dimensional Non-Commutative Spaces”, J. Phys. A-Math. Theor., 47:2 (2014), 025302  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    12. Santos W.O., Souza A.M.C., “Phenomenology of Noncommutative Phase Space Via the Anomalous Zeeman Effect in Hydrogen Atom”, Int. J. Mod. Phys. A, 29:31 (2014), 1450177  crossref  mathscinet  zmath  adsnasa  isi  scopus
    13. Calcagni G., “Multifractional theories: an unconventional review”, J. High Energy Phys., 2017, no. 3, 138  crossref  mathscinet  zmath  isi  scopus
    14. Amelino-Camelia G., Calcagni G., Ronco M., “Imprint of Quantum Gravity in the Dimension and Fabric of Spacetime”, Phys. Lett. B, 774 (2017), 630–634  crossref  isi  scopus
    15. Gnatenko Kh.P., Tkachuk V.M., “Noncommutative Phase Space With Rotational Symmetry and Hydrogen Atom”, Int. J. Mod. Phys. A, 32:26 (2017), 1750161  crossref  mathscinet  zmath  isi
    16. Gnatenko Kh.P., “Kinematic Variables in Noncommutative Phase Space and Parameters of Noncommutativity”, Mod. Phys. Lett. A, 32:31 (2017), 1750166  crossref  mathscinet  zmath  isi  scopus
    17. Calcagni G., Ronco M., “Dimensional Flow and Fuzziness in Quantum Gravity: Emergence of Stochastic Spacetime”, Nucl. Phys. B, 923 (2017), 144–167  crossref  zmath  isi  scopus
    18. Calcagni G., “Cosmology of Quantum Gravities”: G. Calcagni, Classical and Quantum Cosmology, Graduate Texts in Physics, Springer International Publishing Ag, 2017, 543–624  crossref  mathscinet  isi
    19. Gnatenko Kh.P., Shyiko V O., “Effect of Noncommutativity on the Spectrum of Free Particle and Harmonic Oscillator in Rotationally Invariant Noncommutative Phase Space”, Mod. Phys. Lett. A, 33:16 (2018), 1850091  crossref  mathscinet  zmath  isi  scopus
    20. Delhom-Latorre A., Olmo G.J., Ronco M., “Observable Traces of Non-Metricity: New Constraints on Metric-Affine Gravity”, Phys. Lett. B, 780 (2018), 294–299  crossref  zmath  isi  scopus
    21. Gnatenko Kh.P., Laba H.P., Tkachuk V.M., “Features of Free Particles System Motion in Noncommutative Phase Space and Conservation of the Total Momentum”, Mod. Phys. Lett. A, 33:23 (2018), 1850131  crossref  mathscinet  zmath  isi  scopus
    22. Gnatenko Kh.P., “Features of Description of Composite System'S Motion in Twist-Deformed Spacetime”, Mod. Phys. Lett. A, 34:9 (2019), 1950071  crossref  mathscinet  zmath  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Эта страница:264
    Полный текст:34
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019