RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2011, Volume 7, 050, 16 pp. (Mi sigma608)  

This article is cited in 2 scientific papers (total in 2 papers)

On Parameter Differentiation for Integral Representations of Associated Legendre Functions

Howard S. Cohlab

a Applied and Computational Mathematics Division, Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
b Department of Mathematics, University of Auckland, 38 Princes Str., Auckland, New Zealand

Abstract: For integral representations of associated Legendre functions in terms of modified Bessel functions, we establish justification for differentiation under the integral sign with respect to parameters. With this justification, derivatives for associated Legendre functions of the first and second kind with respect to the degree are evaluated at odd-half-integer degrees, for general complex-orders, and derivatives with respect to the order are evaluated at integer-orders, for general complex-degrees. We also discuss the properties of the complex function $f:\mathbb C\setminus\{-1,1\}\to\mathbb C$ given by $f(z)=z/(\sqrt{z+1}\sqrt{z-1})$.

Keywords: Legendre functions; modified Bessel functions; derivatives

DOI: https://doi.org/10.3842/SIGMA.2011.050

Full text: PDF file (496 kB)
Full text: http://emis.mi.ras.ru/journals/SIGMA/2011/050/
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1101.3756
MSC: 31B05; 31B10; 33B10; 33B15; 33C05; 33C10
Received: January 19, 2011; in final form May 4, 2011; Published online May 24, 2011
Language:

Citation: Howard S. Cohl, “On Parameter Differentiation for Integral Representations of Associated Legendre Functions”, SIGMA, 7 (2011), 050, 16 pp.

Citation in format AMSBIB
\Bibitem{Coh11}
\by Howard S.~Cohl
\paper On Parameter Differentiation for Integral Representations of Associated Legendre Functions
\jour SIGMA
\yr 2011
\vol 7
\papernumber 050
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma608}
\crossref{https://doi.org/10.3842/SIGMA.2011.050}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2804586}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000290851000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-82655175806}


Linking options:
  • http://mi.mathnet.ru/eng/sigma608
  • http://mi.mathnet.ru/eng/sigma/v7/p50

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Szmytkowski R., “On parameter derivatives of the associated Legendre function of the first kind (with applications to the construction of the associated Legendre function of the second kind of integer degree and order)”, J Math Anal Appl, 386:1 (2012), 332–342  crossref  mathscinet  zmath  isi  elib  scopus
    2. Szmytkowski R., “On the Derivatives Partial Derivative P-2(Nu)(Z)/Partial Derivative Nu(2) and Partial Derivative Q(Nu)(Z)/Partial Derivative Nu of the Legendre Functions With Respect to Their Degrees”, Integral Transform. Spec. Funct., 28:9 (2017), 645–662  crossref  mathscinet  zmath  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:159
    Full text:40
    References:34

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021