RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2011, Volume 7, 079, 24 pages (Mi sigma637)  

This article is cited in 9 scientific papers (total in 9 papers)

Linearizability of Nonlinear Equations on a Quad-Graph by a Point, Two Points and Generalized Hopf–Cole Transformations

Decio Levi, Christian Scimiterna

Dipartimento di Ingegneria Elettronica, Università degli Studi Roma Tre and Sezione INFN, Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy

Abstract: In this paper we propose some linearizability tests of partial difference equations on a quad-graph given by one point, two points and generalized Hopf–Cole transformations. We apply the so obtained tests to a set of nontrivial examples.

Keywords: quad-graph equations; linearizability; point transformations; Hopf–Cole transformations

DOI: https://doi.org/10.3842/SIGMA.2011.079

Full text: PDF file (491 kB)
Full text: http://emis.mi.ras.ru/.../079
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1108.3648
MSC: 39A14
Received: April 15, 2011; in final form August 11, 2011; Published online August 18, 2011
Language:

Citation: Decio Levi, Christian Scimiterna, “Linearizability of Nonlinear Equations on a Quad-Graph by a Point, Two Points and Generalized Hopf–Cole Transformations”, SIGMA, 7 (2011), 079, 24 pp.

Citation in format AMSBIB
\Bibitem{LevSci11}
\by Decio Levi, Christian Scimiterna
\paper Linearizability of Nonlinear Equations on a Quad-Graph by a Point, Two Points and Generalized Hopf--Cole Transformations
\jour SIGMA
\yr 2011
\vol 7
\papernumber 079
\totalpages 24
\mathnet{http://mi.mathnet.ru/sigma637}
\crossref{https://doi.org/10.3842/SIGMA.2011.079}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2861197}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000293997300002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896058855}


Linking options:
  • http://mi.mathnet.ru/eng/sigma637
  • http://mi.mathnet.ru/eng/sigma/v7/p79

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. Hernandez Heredero, D. Levi, Ch. Scimiterna, “Classification of discrete systems on a square lattice”, Theoret. and Math. Phys., 172:2 (2012), 1097–1108  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    2. Levi D., Scimiterna Ch., “Classification of Multilinear Real Quadratic Partial Difference Equations Linearizable by Point and Hopf-Cole Transformations”, Int. J. Geom. Methods Mod. Phys., 9:2, SI (2012), 1260004  crossref  mathscinet  isi  scopus
    3. Scimiterna C., Levi D., “Three-Point Partial Difference Equations Linearizable by Local and Nonlocal Transformations”, J. Phys. A-Math. Theor., 46:2 (2013), 025205  crossref  mathscinet  adsnasa  isi  elib  scopus
    4. Scimiterna Ch., Levi D., “Classification of Discrete Equations Linearizable by Point Transformation on a Square Lattice”, Front. Math. China, 8:5, SI (2013), 1067–1076  crossref  mathscinet  zmath  isi  scopus
    5. Levi D., Scimiterna C., “Linearization Through Symmetries for Discrete Equations”, J. Phys. A-Math. Theor., 46:32 (2013), 325204  crossref  mathscinet  zmath  isi  elib  scopus
    6. Sahadevan R., Nagavigneshwari G., “New Integrable and Linearizable Nonlinear Difference Equations”, J. Nonlinear Math. Phys., 20:2 (2013), 179–190  crossref  mathscinet  isi  elib  scopus
    7. Sergey Ya. Startsev, “Non-Point Invertible Transformations and Integrability of Partial Difference Equations”, SIGMA, 10 (2014), 066, 13 pp.  mathnet  crossref  mathscinet
    8. Startsev S.Ya., “Darboux Integrable Discrete Equations Possessing an Autonomous First-Order Integral”, J. Phys. A-Math. Theor., 47:10 (2014), 105204  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    9. Sahadevan R., Nagavigneshwari G., “Continuous Symmetries of Certain Nonlinear Partial Difference Equations and Their Reductions”, Phys. Lett. A, 378:43 (2014), 3155–3160  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:212
    Full text:31
    References:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020