RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2011, Volume 7, 101, 54 pages (Mi sigma659)  

This article is cited in 5 scientific papers (total in 5 papers)

A Relativistic Conical Function and its Whittaker Limits

Simon Ruijsenaars

School of Mathematics, University of Leeds, Leeds LS2 9JT, UK

Abstract: In previous work we introduced and studied a function $R(a_{+},a_{-},c;v,\hat{v})$ that is a generalization of the hypergeometric function $ _2F_1$ and the Askey–Wilson polynomials. When the coupling vector $c\in\mathbb C^4$ is specialized to $(b,0,0,0)$, $b\in\mathbb C$, we obtain a function $\mathcal R (a_{+},a_{-},b;v,2\hat{v})$ that generalizes the conical function specialization of $ _2F_1$ and the $q$-Gegenbauer polynomials. The function $\mathcal R$ is the joint eigenfunction of four analytic difference operators associated with the relativistic Calogero–Moser system of $A_1$ type, whereas the function $R$ corresponds to $BC_1$, and is the joint eigenfunction of four hyperbolic Askey–Wilson type difference operators. We show that the $\mathcal R$-function admits five novel integral representations that involve only four hyperbolic gamma functions and plane waves. Taking their nonrelativistic limit, we arrive at four representations of the conical function. We also show that a limit procedure leads to two commuting relativistic Toda Hamiltonians and two commuting dual Toda Hamiltonians, and that a similarity transform of the function $\mathcal R$ converges to a joint eigenfunction of the latter four difference operators.

Keywords: relativistic Calogero–Moser system, relativistic Toda system, relativistic conical function, relativistic Whittaker function.

DOI: https://doi.org/10.3842/SIGMA.2011.101

Full text: PDF file (803 kB)
Full text: http://emis.mi.ras.ru/.../101
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 0807.0258
MSC: 33C05; 33E30; 39A10; 81Q05; 81Q80
Received: April 30, 2011; in final form October 23, 2011; Published online November 1, 2011
Language:

Citation: Simon Ruijsenaars, “A Relativistic Conical Function and its Whittaker Limits”, SIGMA, 7 (2011), 101, 54 pp.

Citation in format AMSBIB
\Bibitem{Rui11}
\by Simon Ruijsenaars
\paper A Relativistic Conical Function and its Whittaker Limits
\jour SIGMA
\yr 2011
\vol 7
\papernumber 101
\totalpages 54
\mathnet{http://mi.mathnet.ru/sigma659}
\crossref{https://doi.org/10.3842/SIGMA.2011.101}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000296884200001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857081679}


Linking options:
  • http://mi.mathnet.ru/eng/sigma659
  • http://mi.mathnet.ru/eng/sigma/v7/p101

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Hallnaes M. Ruijsenaars S., “Kernel Functions and Backlund Transformations for Relativistic Calogero–Moser and Toda Systems”, J. Math. Phys., 53:12 (2012), 123512  crossref  mathscinet  zmath  adsnasa  isi  scopus
    2. Hallnaes M. Ruijsenaars S., “Joint Eigenfunctions For the Relativistic Calogero–Moser Hamiltonians of Hyperbolic Type: i. First Steps”, Int. Math. Res. Notices, 2014, no. 16, 4400–4456  crossref  mathscinet  zmath  isi  scopus
    3. Hallnaes M., Ruijsenaars S., “a Recursive Construction of Joint Eigenfunctions For the Hyperbolic Nonrelativistic Calogero–Moser Hamiltonians”, Int. Math. Res. Notices, 2015, no. 20, 10278–10313  crossref  mathscinet  zmath  isi  scopus
    4. Hallnas M., Ruijsenaars S., “Joint Eigenfunctions For the Relativistic Calogero–Moser Hamiltonians of Hyperbolic Type II. the Two-and Three-Variable Cases”, Int. Math. Res. Notices, 2018, no. 14, 4404–4449  crossref  mathscinet  isi
    5. Hallnas M., Ruijsenaars S., “Product Formulas For the Relativistic and Nonrelativistic Conical Functions”, Representation Theory, Special Functions and Painleve Equations - Rims 2015, Advanced Studies in Pure Mathematics, 76, eds. Konno H., Sakai H., Shiraishi J., Suzuki T., Yamada Y., Math Soc Japan, 2018, 195–245  mathscinet  isi
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:131
    Full text:21
    References:29

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019