RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2012, Volume 8, 003, 12 pages (Mi sigma680)  

This article is cited in 5 scientific papers (total in 5 papers)

Supersymmetric proof of the Hirzebruch–Riemann–Roch theorem for non-Kähler manifolds

Andrei V. Smilga

SUBATECH, Université de Nantes, 4 rue Alfred Kastler, BP 20722, Nantes 44307, France

Abstract: We present the proof of the HRR theorem for a generic complex compact manifold by evaluating the functional integral for the Witten index of the appropriate supersymmetric quantum mechanical system.

Keywords: index, Dolbeault, supersymmetry.

DOI: https://doi.org/10.3842/SIGMA.2012.003

Full text: PDF file (382 kB)
Full text: http://emis.mi.ras.ru/.../003
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1109.2867
MSC: 53C55; 53C80
Received: November 10, 2011; in final form January 4, 2012; Published online January 8, 2012
Language:

Citation: Andrei V. Smilga, “Supersymmetric proof of the Hirzebruch–Riemann–Roch theorem for non-Kähler manifolds”, SIGMA, 8 (2012), 003, 12 pp.

Citation in format AMSBIB
\Bibitem{Smi12}
\by Andrei V. Smilga
\paper Supersymmetric proof of the Hirzebruch--Riemann--Roch theorem for non-K\"ahler manifolds
\jour SIGMA
\yr 2012
\vol 8
\papernumber 003
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma680}
\crossref{https://doi.org/10.3842/SIGMA.2012.003}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2892332}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000299319700001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856036817}


Linking options:
  • http://mi.mathnet.ru/eng/sigma680
  • http://mi.mathnet.ru/eng/sigma/v8/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Fedoruk S.A., Ivanov E.A., “Real and Complex Supersymmetric D=1 SIGMA Models with Torsions”, Int. J. Mod. Phys. A, 27:25 (2012), 1250146  crossref  mathscinet  zmath  adsnasa  isi
    2. Ivanov E.A., Smilga A.V., “Dirac Operator on Complex Manifolds and Supersymmetric Quantum Mechanics”, Int. J. Mod. Phys. A, 27:25 (2012), 1230024  crossref  mathscinet  zmath  adsnasa  isi
    3. Smilga A.V., “Taming the Zoo of Supersymmetric Quantum Mechanical Models”, J. High Energy Phys., 2013, no. 5, 119  crossref  mathscinet  zmath  isi  elib  scopus
    4. Fedoruk S. Smilga A., “Comments on Hkt Supersymmetric SIGMA Models and Their Hamiltonian Reduction”, J. Phys. A-Math. Theor., 48:21 (2015), 215401  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    5. Fedoruk S., Ivanov E., Smilga A., “Generic Hkt Geometries in the Harmonic Superspace Approach”, J. Math. Phys., 59:8 (2018), 083501  crossref  mathscinet  zmath  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:185
    Full text:32
    References:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019