RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2012, Volume 8, 004, 10 pages (Mi sigma681)  

This article is cited in 1 scientific paper (total in 1 paper)

On a Lie algebraic characterization of vector bundles

Pierre B.A. Lecomte, Thomas Leuther, Elie Zihindula Mushengezi

Institute of Mathematics, Grande Traverse 12, B-4000 Liège, Belgium

Abstract: We prove that a vector bundle $\pi\colon E\to M$ is characterized by the Lie algebra generated by all differential operators on $E$ which are eigenvectors of the Lie derivative in the direction of the Euler vector field. Our result is of Pursell–Shanks type but it is remarkable in the sense that it is the whole fibration that is characterized here. The proof relies on a theorem of [Lecomte P., J. Math. Pures Appl. (9) 60 (1981), 229–239] and inherits the same hypotheses. In particular, our characterization holds only for vector bundles of rank greater than 1.

Keywords: vector bundle, algebraic characterization, Lie algebra, differential operators.

DOI: https://doi.org/10.3842/SIGMA.2012.004

Full text: PDF file (322 kB)
Full text: http://emis.mi.ras.ru/.../004
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1109.4772
MSC: 13N10; 16S32; 17B65; 17B63
Received: September 23, 2011; in final form January 23, 2012; Published online January 26, 2012
Language:

Citation: Pierre B.A. Lecomte, Thomas Leuther, Elie Zihindula Mushengezi, “On a Lie algebraic characterization of vector bundles”, SIGMA, 8 (2012), 004, 10 pp.

Citation in format AMSBIB
\Bibitem{LecLeuZih12}
\by Pierre B.A. Lecomte, Thomas Leuther, Elie Zihindula Mushengezi
\paper On a Lie algebraic characterization of vector bundles
\jour SIGMA
\yr 2012
\vol 8
\papernumber 004
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma681}
\crossref{https://doi.org/10.3842/SIGMA.2012.004}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2892331}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000299614900001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84881515091}


Linking options:
  • http://mi.mathnet.ru/eng/sigma681
  • http://mi.mathnet.ru/eng/sigma/v8/p4

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Grabowski J., Kotov A., Poncin N., “Lie Superalgebras of Differential Operators”, J. Lie Theory, 23:1 (2013), 35–54  mathscinet  zmath  isi
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:195
    Full text:31
    References:23

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019