RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2012, Volume 8, 008, 14 pages (Mi sigma685)  

This article is cited in 7 scientific papers (total in 7 papers)

Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems

Hiroshi Miki, Hiroaki Goda, Satoshi Tsujimoto

Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Sakyo-Ku, Kyoto 606 8501, Japan

Abstract: Discrete spectral transformations of skew orthogonal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in $1+1$ dimension and in $2+1$ dimension. Especially in the $(2+1)$-dimensional case, the corresponding system can be extended to $2\times 2$ matrix form. The factorization theorem of the Christoffel kernel for skew orthogonal polynomials in random matrix theory is presented as a by-product of these transformations.

Keywords: skew orthogonal polynomials, discrete integrable systems, discrete coupled KP equation, Pfaff lattice, Christoffel–Darboux kernel.

DOI: https://doi.org/10.3842/SIGMA.2012.008

Full text: PDF file (364 kB)
Full text: http://emis.mi.ras.ru/.../008
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1111.7262
MSC: 42C05; 35C05; 37K60; 15B52
Received: December 1, 2011; in final form February 20, 2012; Published online February 29, 2012
Language:

Citation: Hiroshi Miki, Hiroaki Goda, Satoshi Tsujimoto, “Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems”, SIGMA, 8 (2012), 008, 14 pp.

Citation in format AMSBIB
\Bibitem{MikGodTsu12}
\by Hiroshi Miki, Hiroaki Goda, Satoshi Tsujimoto
\paper Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems
\jour SIGMA
\yr 2012
\vol 8
\papernumber 008
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma685}
\crossref{https://doi.org/10.3842/SIGMA.2012.008}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2900507}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000301230300001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858984612}


Linking options:
  • http://mi.mathnet.ru/eng/sigma685
  • http://mi.mathnet.ru/eng/sigma/v8/p8

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kazuki Maeda, Satoshi Tsujimoto, “Direct Connection between the $R_{II}$ Chain and the Nonautonomous Discrete Modified KdV Lattice”, SIGMA, 9 (2013), 073, 12 pp.  mathnet  crossref  mathscinet
    2. X.-B. Hu, Sh.-H. Li, “The partition function of the bures ensemble as the tau-function of BKP and DKP hierarchies: continuous and discrete”, J. Phys. A-Math. Theor., 50:28 (2017), 285201  crossref  mathscinet  zmath  isi  scopus
    3. K. Maeda, “Nonautonomous ultradiscrete hungry Toda lattice and a generalized box-ball system”, J. Phys. A-Math. Theor., 50:36 (2017), 365204  crossref  mathscinet  zmath  isi  scopus
    4. X.-K. Chang, Y. He, X.-B. Hu, Sh.-H. Li, “A new integrable convergence acceleration algorithm for computing Brezinski–durbin–redivo–zaglia's sequence transformation via Pfaffians”, Numer. Algorithms, 78:1 (2018), 87–106  crossref  mathscinet  zmath  isi  scopus
    5. X. Chang, Y. He, X. Hu, Sh. Li, H.-W. Tam, Y. Zhang, “Coupled modified KdV equations, skew orthogonal polynomials, convergence acceleration algorithms and Laurent property”, Sci. China-Math., 61:6 (2018), 1063–1078  crossref  mathscinet  zmath  isi  scopus
    6. B. Wang, X.-K. Chang, X.-B. Hu, Sh.-H. Li, “On moving frames and Toda lattices of BKP and CKP types”, J. Phys. A-Math. Theor., 51:32 (2018), 324002  crossref  isi  scopus
    7. Chang X.-K., He Y., Hu X.-B., Li Sh.-H., “Partial-Skew-Orthogonal Polynomials and Related Integrable Lattices With Pfaffian Tau-Functions”, Commun. Math. Phys., 364:3 (2018), 1069–1119  crossref  mathscinet  zmath  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:264
    Full text:31
    References:38

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019