RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2012, Volume 8, 012, 14 pages (Mi sigma689)  

This article is cited in 5 scientific papers (total in 5 papers)

New variables of separation for the Steklov–Lyapunov system

Andrey V. Tsiganov

St. Petersburg State University, St. Petersburg, Russia

Abstract: A rigid body in an ideal fluid is an important example of Hamiltonian systems on a dual to the semidirect product Lie algebra $e(3)=so(3)\ltimes\mathbb R^3$. We present the bi-Hamiltonian structure and the corresponding variables of separation on this phase space for the Steklov–Lyapunov system and it's gyrostatic deformation.

Keywords: bi-Hamiltonian geometry, variables of separation.

DOI: https://doi.org/10.3842/SIGMA.2012.012

Full text: PDF file (379 kB)
Full text: http://emis.mi.ras.ru/.../012
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1101.4345
MSC: 70H20; 70H06; 37K10
Received: October 31, 2011; in final form March 12, 2012; Published online March 20, 2012
Language:

Citation: Andrey V. Tsiganov, “New variables of separation for the Steklov–Lyapunov system”, SIGMA, 8 (2012), 012, 14 pp.

Citation in format AMSBIB
\Bibitem{Tsi12}
\by Andrey V. Tsiganov
\paper New variables of separation for the Steklov--Lyapunov system
\jour SIGMA
\yr 2012
\vol 8
\papernumber 012
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma689}
\crossref{https://doi.org/10.3842/SIGMA.2012.012}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2942827}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000303829600001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858961226}


Linking options:
  • http://mi.mathnet.ru/eng/sigma689
  • http://mi.mathnet.ru/eng/sigma/v8/p12

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Andrey V. Tsiganov, “Simultaneous Separation for the Neumann and Chaplygin Systems”, Regul. Chaotic Dyn., 20:1 (2015), 74–93  mathnet  crossref  mathscinet  zmath
    2. T. Skrypnyk, “Separation of variables in anisotropic models: anisotropic Rabi and elliptic Gaudin model in an external magnetic field”, J. Phys. A-Math. Theor., 50:32 (2017), 325206  crossref  mathscinet  zmath  isi  scopus
    3. A. V. Tsiganov, “Discretization of Hamiltonian systems and intersection theory”, Theoret. and Math. Phys., 197:3 (2018), 1806–1822  mathnet  crossref  crossref  adsnasa  isi  elib
    4. Andrey V. Tsiganov, “On Discretization of the Euler Top”, Regul. Chaotic Dyn., 23:6 (2018), 785–796  mathnet  crossref
    5. Tsiganov A.V., “Hamiltonization and Separation of Variables For a Chaplygin Ball on a Rotating Plane”, Regul. Chaotic Dyn., 24:2 (2019), 171–186  mathnet  crossref  mathscinet  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:120
    Full text:26
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019