RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2012, Volume 8, 017, 30 pages (Mi sigma694)  

This article is cited in 25 scientific papers (total in 25 papers)

Relational observables in gravity: a review

Johannes Tambornino

Laboratoire de Physique, ENS Lyon, CNRS-UMR 5672, 46 Allée d'Italie, Lyon 69007, France

Abstract: We present an overview on relational observables in gravity mainly from a loop quantum gravity perspective. The gauge group of general relativity is the diffeomorphism group of the underlying manifold. Consequently, general relativity is a totally constrained theory with vanishing canonical Hamiltonian. This fact, often referred to as the problem of time, provides the main conceptual difficulty towards the construction of gauge-invariant local observables. Nevertheless, within the framework of complete observables, that encode relations between dynamical fields, progress has been made during the last 20 years. Although analytic control over observables for full gravity is still lacking, perturbative calculations have been performed and within de-parameterizable toy models it was possible for the first time to construct a full set of gauge invariant observables for a background independent field theory. We review these developments and comment on their implications for quantum gravity.

Keywords: Dirac observables, quantum gravity, problem of time, gauge invariance.

DOI: https://doi.org/10.3842/SIGMA.2012.017

Full text: PDF file (551 kB)
Full text: http://emis.mi.ras.ru/.../017
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1109.0740
MSC: 83C45; 83C05; 81S05
Received: August 31, 2011; in final form March 14, 2012; Published online March 28, 2012
Language:

Citation: Johannes Tambornino, “Relational observables in gravity: a review”, SIGMA, 8 (2012), 017, 30 pp.

Citation in format AMSBIB
\Bibitem{Tam12}
\by Johannes Tambornino
\paper Relational observables in gravity: a review
\jour SIGMA
\yr 2012
\vol 8
\papernumber 017
\totalpages 30
\mathnet{http://mi.mathnet.ru/sigma694}
\crossref{https://doi.org/10.3842/SIGMA.2012.017}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2942822}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000303832400001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84859393342}


Linking options:
  • http://mi.mathnet.ru/eng/sigma694
  • http://mi.mathnet.ru/eng/sigma/v8/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Hohn Ph.A. Kubalova E. Tsobanjan A., “Effective Relational Dynamics of a Nonintegrable Cosmological Model”, Phys. Rev. D, 86:6 (2012), 065014  crossref  adsnasa  isi  elib  scopus
    2. Kabat D., Lifschytz G., “Cft Representation of Interacting Bulk Gauge Fields in Ads”, Phys. Rev. D, 87:8 (2013), 086004  crossref  mathscinet  adsnasa  isi  elib  scopus
    3. Sasakura N., “Quantum Canonical Tensor Model and an Exact Wave Function”, Int. J. Mod. Phys. A, 28:21 (2013)  crossref  mathscinet  zmath  isi  scopus
    4. Edward Anderson, “Beables/Observables in Classical and Quantum Gravity”, SIGMA, 10 (2014), 092, 36 pp.  mathnet  crossref
    5. Hoehn Ph.A., “Quantization of Systems With Temporally Varying Discretization. II. Local Evolution Moves”, J. Math. Phys., 55:10 (2014), 103507  crossref  mathscinet  zmath  adsnasa  isi  scopus
    6. Hoehn Ph.A., “Quantization of Systems With Temporally Varying Discretization. i. Evolving Hilbert Spaces”, J. Math. Phys., 55:8 (2014), 083508  crossref  mathscinet  zmath  adsnasa  isi  scopus
    7. Khavkine I., “Local and Gauge Invariant Observables in Gravity”, Class. Quantum Gravity, 32:18 (2015), 185019  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    8. Feller A. Livine E.R., “Ising Spin Network States For Loop Quantum Gravity: a Toy Model For Phase Transitions”, Class. Quantum Gravity, 33:6 (2016), 065005  crossref  mathscinet  zmath  adsnasa  isi  scopus
    9. J. B. Pitts, “Equivalent theories redefine Hamiltonian observables to exhibit change in general relativity”, Class. Quantum Gravity, 34:5 (2017), 055008  crossref  mathscinet  zmath  isi  scopus
    10. Ph. A. Hoehn, “Toolbox for reconstructing quantum theory from rules on information acquisition”, Quantum, 1 (2017), UNSP 38  crossref  isi
    11. H. Gomes, “Quantum gravity in timeless configuration space”, Class. Quantum Gravity, 34:23 (2017), 235004  crossref  mathscinet  zmath  isi  scopus
    12. J. Olmedo, S. Saini, P. Singh, “From black holes to white holes: a quantum gravitational, symmetric bounce”, Class. Quantum Gravity, 34:22 (2017), 225011  crossref  mathscinet  zmath  isi  scopus
    13. B. Dittrich, Ph. A. Hoehn, T. A. Koslowski, M. I. Nelson, “Can chaos be observed in quantum gravity?”, Phys. Lett. B, 769 (2017), 554–560  crossref  zmath  isi  scopus
    14. M. B. Frob, “One-loop quantum gravitational corrections to the scalar two-point function at fixed geodesic distance”, Class. Quantum Gravity, 35:3 (2018), 035005  crossref  mathscinet  zmath  isi  scopus
    15. M. B. Frob, “Gauge-invariant quantum gravitational corrections to correlation functions”, Class. Quantum Gravity, 35:5 (2018), 055006  crossref  mathscinet  zmath  isi  scopus
    16. R. I. Ivanov, E. M. Prodanov, “Dynamical analysis of an N-H-T cosmological quintessence real gas model with a general equation of state”, Int. J. Mod. Phys. A, 33:3 (2018), 1850025  crossref  mathscinet  zmath  isi  scopus
    17. M. B. Frob, W. C. C. Lima, “Propagators for gauge-invariant observables in cosmology”, Class. Quantum Gravity, 35:9 (2018), 095010  crossref  mathscinet  zmath  isi  scopus
    18. M. B. Froeb, T.-P. Hack, I. Khavkine, “Approaches to linear local gauge-invariant observables in inflationary cosmologies”, Class. Quantum Gravity, 35:11 (2018), 115002  crossref  isi  scopus
    19. J. B. Pitts, “Equivalent theories and changing Hamiltonian observables in general relativity”, Found. Phys., 48:5, SI (2018), 579–590  crossref  mathscinet  isi  scopus
    20. I. Kotecha, D. Oriti, “Statistical equilibrium in quantum gravity: gibbs states in group field theory”, New J. Phys., 20 (2018), 073009  crossref  isi  scopus
    21. Boette A., Rossignoli R., “History States of Systems and Operators”, Phys. Rev. A, 98:3 (2018), 032108  crossref  isi  scopus
    22. Ivanov R.I., Prodanov E.M., “Integrable Cosmological Model With Van der Waals Gas and Matter Creation”, Phys. Rev. D, 99:6 (2019), 063501  crossref  isi  scopus
    23. Froeb M.B., “One-Loop Quantum Gravitational Backreaction on the Local Hubble Rate”, Class. Quantum Gravity, 36:9 (2019), 095010  crossref  isi
    24. Pabon D., Rebon L., Bordakevich S., Gigena N., Boette A., Iemmi C., Rossignoli R., Ledesma S., “Parallel-in-Time Optical Simulation of History States”, Phys. Rev. A, 99:6 (2019), 062333  crossref  isi
    25. Hoehn Ph.A., “Switching Internal Times and a New Perspective on the ‘`Wave Function of the Universe’”, Universe, 5:5 (2019), 116  crossref  isi
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:111
    Full text:16
    References:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019