RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2012, Volume 8, 021, 18 pages (Mi sigma698)  

This article is cited in 9 scientific papers (total in 9 papers)

Lagrange anchor and characteristic symmetries of free massless fields

Dmitry S. Kaparulin, Simon L. Lyakhovich, Alexey A. Sharapov

Department of Quantum Field Theory, Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia

Abstract: A Poincaré covariant Lagrange anchor is found for the non-Lagrangian relativistic wave equations of Bargmann and Wigner describing free massless fields of spin $s>1/2$ in four-dimensional Minkowski space. By making use of this Lagrange anchor, we assign a symmetry to each conservation law and perform the path-integral quantization of the theory.

Keywords: symmetries, conservation laws, Bargmann–Wigner equations, Lagrange anchor.

DOI: https://doi.org/10.3842/SIGMA.2012.021

Full text: PDF file (452 kB)
Full text: http://emis.mi.ras.ru/.../021
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1112.1860
MSC: 70S10; 81T70
Received: December 28, 2011; in final form April 9, 2012; Published online April 12, 2012
Language:

Citation: Dmitry S. Kaparulin, Simon L. Lyakhovich, Alexey A. Sharapov, “Lagrange anchor and characteristic symmetries of free massless fields”, SIGMA, 8 (2012), 021, 18 pp.

Citation in format AMSBIB
\Bibitem{KapLyaSha12}
\by Dmitry S. Kaparulin, Simon L. Lyakhovich, Alexey A. Sharapov
\paper Lagrange anchor and characteristic symmetries of free massless fields
\jour SIGMA
\yr 2012
\vol 8
\papernumber 021
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma698}
\crossref{https://doi.org/10.3842/SIGMA.2012.021}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2942818}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000303833700001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860849725}


Linking options:
  • http://mi.mathnet.ru/eng/sigma698
  • http://mi.mathnet.ru/eng/sigma/v8/p21

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. S. Kaparulin, S. L. Lyakhovich, A. A. Sharapov, “Lagrange anchor for Bargmann–Wigner equations”, Geometric Methods in Physics, Trends in Mathematics, 2013, 119–126  crossref  mathscinet  zmath
    2. M. A. Vasiliev, P. A. Smirnov, “Gauge-noninvariant higher-spin currents in four-dimensional Minkowski space”, Theoret. and Math. Phys., 181:3 (2014), 1509–1521  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. G. Barnich, X. Bekaert, M. Grigoriev, “Notes on conformal invariance of gauge fields”, J. Phys. A-Math. Theor., 48:50 (2015), 505402  crossref  mathscinet  zmath  isi  elib  scopus
    4. D. S. Kaparulin, S. L. Lyakhovich, A. A. Sharapov, “Stable interactions via proper deformations”, J. Phys. A-Math. Theor., 49:15 (2016), 155204  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    5. O. A. Gelfond, M. A. Vasiliev, “Conserved higher-spin charges in $\mathrm{AdS}_4$”, Phys. Lett. B, 754 (2016), 187–194  crossref  zmath  adsnasa  isi  elib  scopus
    6. A. A. Sharapov, “On presymplectic structures for massless higher-spin fields”, Eur. Phys. J. C, 76:6 (2016), 305  crossref  isi  scopus
    7. P. Smirnov, M. Vasiliev, “Gauge non-invariant higher-spin currents in $\mathrm{AdS}_4$”, Universe, 3:4 (2017), 78  crossref  isi
    8. A. Sharapov, E. Skvortsov, “Formal higher-spin theories and Kontsevich–Shoikhet–Tsygan formality”, Nucl. Phys. B, 921 (2017), 538–584  crossref  mathscinet  zmath  isi  scopus
    9. Kaparulin D.S., “Conservation Laws and Stability of Field Theories of Derived Type”, Symmetry-Basel, 11:5 (2019), 642  crossref  isi
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:183
    Full text:47
    References:30

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019