RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2012, Volume 8, 025, 15 pages (Mi sigma702)  

This article is cited in 7 scientific papers (total in 7 papers)

Deformed $\mathfrak{su}(1,1)$ algebra as a model for quantum oscillators

Elchin I. Jafarovab, Neli I. Stoilovac, Joris Van der Jeugtb

a Institute of Physics, Azerbaijan National Academy of Sciences, Javid Av. 33, AZ-1143 Baku, Azerbaijan
b Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281-S9, B-9000 Gent, Belgium
c Institute for Nuclear Research and Nuclear Energy, Boul. Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria

Abstract: The Lie algebra $\mathfrak{su}(1,1)$ can be deformed by a reflection operator, in such a way that the positive discrete series representations of $\mathfrak{su}(1,1)$ can be extended to representations of this deformed algebra $\mathfrak{su}(1,1)_\gamma$. Just as the positive discrete series representations of $\mathfrak{su}(1,1)$ can be used to model a quantum oscillator with Meixner–Pollaczek polynomials as wave functions, the corresponding representations of $\mathfrak{su}(1,1)_\gamma$ can be utilized to construct models of a quantum oscillator. In this case, the wave functions are expressed in terms of continuous dual Hahn polynomials. We study some properties of these wave functions, and illustrate some features in plots. We also discuss some interesting limits and special cases of the obtained oscillator models.

Keywords: oscillator model, deformed algebra $\mathfrak{su}(1,1)$, Meixner–Pollaczek polynomial, continuous dual Hahn polynomial.

DOI: https://doi.org/10.3842/SIGMA.2012.025

Full text: PDF file (410 kB)
Full text: http://emis.mi.ras.ru/.../025
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1202.3541
MSC: 81R05, 81Q65, 33C45
Received: February 17, 2012; in final form May 8, 2012; Published online May 11, 2012
Language:

Citation: Elchin I. Jafarov, Neli I. Stoilova, Joris Van der Jeugt, “Deformed $\mathfrak{su}(1,1)$ algebra as a model for quantum oscillators”, SIGMA, 8 (2012), 025, 15 pp.

Citation in format AMSBIB
\Bibitem{JafStoVan12}
\by Elchin I. Jafarov, Neli I. Stoilova, Joris Van der Jeugt
\paper Deformed $\mathfrak{su}(1,1)$ algebra as a model for quantum oscillators
\jour SIGMA
\yr 2012
\vol 8
\papernumber 025
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma702}
\crossref{https://doi.org/10.3842/SIGMA.2012.025}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2942814}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000303998000001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84882364826}


Linking options:
  • http://mi.mathnet.ru/eng/sigma702
  • http://mi.mathnet.ru/eng/sigma/v8/p25

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Jafarov E.I., Van der Jeugt J., “Discrete Series Representations for Sic (2 Vertical Bar 1), Meixner Polynomials and Oscillator Models”, J. Phys. A-Math. Theor., 45:48 (2012), 485201  crossref  mathscinet  zmath  isi  elib  scopus
    2. Genest V.X. Ismail M.E.H. Vinet L. Zhedanov A., “The Dunkl Oscillator in the Plane: I. Superintegrability, Separated Wavefunctions and Overlap Coefficients”, J. Phys. A-Math. Theor., 46:14 (2013), 145201  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    3. Genest V.X., Vinet L., Zhedanov A., “The Algebra of Dual-1 Hahn Polynomials and the Clebsch–Gordan Problem of Sl(-1)(2)”, J. Math. Phys., 54:2 (2013), 023506  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    4. Roychoudhury R., Roy B., Dube P.P., “Non-Hermitian Oscillator and R-Deformed Heisenberg Algebra”, J. Math. Phys., 54:1 (2013), 012104  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    5. Jafarov E.I., Van der Jeugt J., “The Oscillator Model for the Lie Superalgebra Sh(2 Vertical Bar 2) and Charlier Polynomials”, J. Math. Phys., 54:10 (2013), 103506  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    6. Genest V.X. Vinet L. Zhedanov A., “The Singular and the 2:1 Anisotropic Dunkl Oscillators in the Plane”, J. Phys. A-Math. Theor., 46:32 (2013), 325201  crossref  mathscinet  zmath  isi  elib  scopus
    7. Tierz M., Phys. Rev. D, 93:12 (2016), 126003  crossref  mathscinet  isi  elib  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:147
    Full text:24
    References:34

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019