General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

SIGMA, 2012, Volume 8, 026, 15 pages (Mi sigma703)  

This article is cited in 26 scientific papers (total in 26 papers)

Loop quantum gravity vacuum with nondegenerate geometry

Tim Koslowskia, Hanno Sahlmannb

a Perimeter Institute for Theoretical Physics, Waterloo, Canada
b APCTP, and Physics Department of POSTECH University, Pohang, Korea

Abstract: In loop quantum gravity, states of the gravitational field turn out to be excitations over a vacuum state that is sharply peaked on a degenerate spatial geometry. While this vacuum is singled out as fundamental due to its invariance properties, it is also important to consider states that describe non-degenerate geometries. Such states have features of Bose condensate ground states. We discuss their construction for the Lie algebra as well as the Weyl algebra setting, and point out possible applications in effective field theory, Loop Quantum Cosmology, as well as further generalizations.

Keywords: loop quantum gravity, representations, geometric condensate.


Full text: PDF file (415 kB)
Full text:
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1109.4688
MSC: 83C45, 81R15, 46L30, 28C20
Received: September 23, 2011; in final form May 3, 2012; Published online May 12, 2012

Citation: Tim Koslowski, Hanno Sahlmann, “Loop quantum gravity vacuum with nondegenerate geometry”, SIGMA, 8 (2012), 026, 15 pp.

Citation in format AMSBIB
\by Tim Koslowski, Hanno Sahlmann
\paper Loop quantum gravity vacuum with nondegenerate geometry
\jour SIGMA
\yr 2012
\vol 8
\papernumber 026
\totalpages 15

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Dittrich B., “From the Discrete to the Continuous: Towards a Cylindrically Consistent Dynamics”, New J. Phys., 14 (2012), 123004  crossref  mathscinet  isi  scopus
    2. Varadarajan M., “The Generator of Spatial Diffeomorphisms in the Koslowski-Sahlmann Representation”, Class. Quantum Gravity, 30:17 (2013), 175017  crossref  mathscinet  zmath  adsnasa  isi  scopus
    3. Sengupta S., “Quantum Geometry with a Nondegenerate Vacuum: a Toy Model”, Phys. Rev. D, 88:6 (2013), 064016  crossref  adsnasa  isi  scopus
    4. Livine E.R., “Deformation Operators of Spin Networks and Coarse-Graining”, Class. Quantum Gravity, 31:7 (2014), 075004  crossref  mathscinet  zmath  adsnasa  isi  scopus
    5. Sengupta S., “Asymptotic Flatness and Quantum Geometry”, Class. Quantum Gravity, 31:8 (2014), 085005  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    6. Smolin L., “Positive Energy in Quantum Gravity”, Phys. Rev. D, 90:4 (2014), 044034  crossref  mathscinet  adsnasa  isi  scopus
    7. Lahoche V. Oriti D. Rivasseau V., “Renormalization of An Abelian Tensor Group Field Theory: Solution At Leading Order”, J. High Energy Phys., 2015, no. 4, 095  crossref  mathscinet  isi  scopus
    8. Benedetti D. Ben Geloun J. Oriti D., “Functional Renormalisation Group Approach For Tensorial Group Field Theory: a Rank-3 Model”, J. High Energy Phys., 2015, no. 3, 084  crossref  mathscinet  isi  elib  scopus
    9. Bojowald M., “Quantum Cosmology: a Review”, Rep. Prog. Phys., 78:2 (2015), 023901  crossref  mathscinet  adsnasa  isi  elib  scopus
    10. Oriti D. Pranzetti D. Ryan J.P. Sindoni L., “Generalized Quantum Gravity Condensates For Homogeneous Geometries and Cosmology”, Class. Quantum Gravity, 32:23 (2015), 235016  crossref  mathscinet  zmath  adsnasa  isi  scopus
    11. Campiglia M., Varadarajan M., “a Quantum Kinematics For Asymptotically Flat Gravity”, Class. Quantum Gravity, 32:13 (2015), 135011  crossref  mathscinet  zmath  adsnasa  isi  scopus
    12. Dittrich B. Geiller M., “Flux Formulation of Loop Quantum Gravity: Classical Framework”, Class. Quantum Gravity, 32:13 (2015), 135016  crossref  mathscinet  zmath  adsnasa  isi  scopus
    13. Dittrich B. Geiller M., “a New Vacuum For Loop Quantum Gravity”, Class. Quantum Gravity, 32:11 (2015), 112001  crossref  mathscinet  zmath  adsnasa  isi  scopus
    14. Lanery S., Thiemann T., “Projective loop quantum gravity. I. State space”, J. Math. Phys., 57:12 (2016), 122304  crossref  mathscinet  zmath  isi  scopus
    15. Charles Ch. Livine E.R., “The Fock space of loopy spin networks for quantum gravity”, Gen. Relativ. Gravit., 48:8 (2016), 113  crossref  mathscinet  zmath  isi  elib  scopus
    16. Ben Geloun J. Martini R. Oriti D., Phys. Rev. D, 94:2 (2016), 024017  crossref  mathscinet  isi  scopus
    17. Bodendorfer N., “Some notes on the Kodama state, maximal symmetry, and the isolated horizon boundary condition”, Phys. Rev. D, 93:12 (2016), 124042  crossref  mathscinet  isi  scopus
    18. Wilson-Ewing E., “Anisotropic loop quantum cosmology with self-dual variables”, Phys. Rev. D, 93:8 (2016), 083502  crossref  mathscinet  isi  elib  scopus
    19. Oriti D. Sindoni L. Wilson-Ewing E., “Emergent Friedmann dynamics with a quantum bounce from quantum gravity condensates”, Class. Quantum Gravity, 33:22 (2016), 224001  crossref  mathscinet  zmath  isi  elib  scopus
    20. Delcamp C., Dittrich B., Riello A., “On Entanglement Entropy in Non-Abelian Lattice Gauge Theory and 3D Quantum Gravity”, J. High Energy Phys., 2016, no. 11, 102  crossref  mathscinet  zmath  isi  scopus
    21. B. Dittrich, M. Geiller, “Quantum gravity kinematics from extended TQFTs”, New J. Phys., 19 (2017), 013003  crossref  isi  scopus
    22. Ch. Charles, E. R. Livine, “The closure constraint for the hyperbolic tetrahedron as a Bianchi identity”, Gen. Relativ. Gravit., 49:7 (2017), 92  crossref  mathscinet  zmath  isi  scopus
    23. K. Eder, H. Sahlmann, “Quantum theory of charged isolated horizons”, Phys. Rev. D, 97:8 (2018), 086016  crossref  isi  scopus
    24. A. Kegeles, D. Oriti, C. Tomlin, “Inequivalent coherent state representations in group field theory”, Class. Quantum Gravity, 35:12 (2018), 125011  crossref  zmath  isi  scopus
    25. Gielen S. Oriti D., “Cosmological Perturbations From Full Quantum Gravity”, Phys. Rev. D, 98:10 (2018), 106019  crossref  mathscinet  isi  scopus
    26. Charles Ch., “Abelian 2+1D Loop Quantum Gravity Coupled to a Scalar Field”, Gen. Relativ. Gravit., 51:3 (2019), 48  crossref  mathscinet  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:265
    Full text:21

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019