General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

SIGMA, 2012, Volume 8, 032, 15 pages (Mi sigma709)  

This article is cited in 19 scientific papers (total in 19 papers)

On the relations between gravity and BF theories

Laurent Freidela, Simone Spezialeb

a Perimeter Institute, 31 Caroline St N, Waterloo ON, N2L 2Y5, Canada
b Centre de Physique Théorique, CNRS-UMR 7332, Luminy Case 907, 13288 Marseille, France

Abstract: We review, in the light of recent developments, the existing relations between gravity and topological BF theories at the classical level. We include the Plebanski action in both self-dual and non-chiral formulations, their generalizations, and the MacDowell–Mansouri action.

Keywords: Plebanski action, MacDowell–Mansouri action, BF gravity, TQFT, modified theories of gravity.


Full text: PDF file (434 kB)
Full text:
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1201.4247
MSC: 83C45
Received: January 23, 2012; in final form May 18, 2012; Published online May 26, 2012

Citation: Laurent Freidel, Simone Speziale, “On the relations between gravity and BF theories”, SIGMA, 8 (2012), 032, 15 pp.

Citation in format AMSBIB
\by Laurent Freidel, Simone Speziale
\paper On the relations between gravity and BF theories
\jour SIGMA
\yr 2012
\vol 8
\papernumber 032
\totalpages 15

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Eugenio Bianchi, Frank Hellmann, “The Construction of Spin Foam Vertex Amplitudes”, SIGMA, 9 (2013), 008, 22 pp.  mathnet  crossref  mathscinet
    2. Mielke E.W., “Symmetry Breaking in Topological Quantum Gravity”, Int. J. Mod. Phys. D, 22:5 (2013), 1330009  crossref  zmath  adsnasa  isi  elib  scopus
    3. Kowalski-Glikman J., “Living in Curved Momentum Space”, Int. J. Mod. Phys. A, 28:12 (2013), 1330014  crossref  mathscinet  adsnasa  isi  scopus
    4. Westman H., Zlosnik T., “Exploring Cartan Gravity with Dynamical Symmetry Breaking”, Class. Quantum Gravity, 31:9 (2014), 095004  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    5. Mikovic A., Oliveira M.A., “Canonical Formulation of Poincare Bfcg Theory and Its Quantization”, Gen. Relativ. Gravit., 47:5 (2015), 58  crossref  mathscinet  zmath  adsnasa  isi  scopus
    6. Ita E., “Instanton Representation of Plebanski Gravity. the Classical Theory”, Int. J. Theor. Phys., 54:10 (2015), 3753–3775  crossref  mathscinet  zmath  isi  scopus
    7. Maia N.T., Pimentel B.M., Valcarcel C.E., “Three-Dimensional Background Field Gravity: a Hamilton-Jacobi Analysis”, Class. Quantum Gravity, 32:18 (2015), 185013  crossref  mathscinet  zmath  adsnasa  isi  scopus
    8. Paszko R., da Rocha R., “Quadratic Gravity From Bf Theory in Two and Three Dimensions”, Gen. Relativ. Gravit., 47:8 (2015), 94  crossref  mathscinet  zmath  adsnasa  isi  scopus
    9. Wan Y., Wang J.C., He H., “Twisted Gauge Theory Model of Topological Phases in Three Dimensions”, Phys. Rev. B, 92:4 (2015), 045101  crossref  adsnasa  isi  elib  scopus
    10. Escalante A., Cavildo Sanchez P., “Faddeev–Jackiw quantization of four dimensional BF theory”, Ann. Phys., 374 (2016), 375–394  crossref  mathscinet  zmath  isi  scopus
    11. Rosales-Quintero J.E., “Antiself-dual gravity and supergravity from a pure connection formulation”, Int. J. Mod. Phys. A, 31:12 (2016), 1650064  crossref  zmath  isi  scopus
    12. C. E. Valcarcel, “Constraint analysis of two-dimensional quadratic gravity from BF theory”, Gen. Relativ. Gravit., 49:1 (2017), 11  crossref  mathscinet  zmath  isi  scopus
    13. G. B. de Gracia, B. M. Pimentel, C. E. Valcarcel, “Hamilton–Jacobi analysis of the four-dimensional BF model with cosmological term”, Eur. Phys. J. Plus, 132:10 (2017), 438  crossref  isi  scopus
    14. A. Feller, E. R. Livine, “Entanglement entropy and correlations in loop quantum gravity”, Class. Quantum Gravity, 35:4 (2018), 045009  crossref  mathscinet  zmath  isi  scopus
    15. E. Rosado Maria, J. Munoz Masque, “Second-order Lagrangians admitting a first-order Hamiltonian formalism”, Ann. Mat. Pura Appl., 197:2 (2018), 357–397  crossref  mathscinet  zmath  isi  scopus
    16. K. Krasnov, “Field redefinitions and Plebanski formalism for GR”, Class. Quantum Gravity, 35:14 (2018), 147001  crossref  isi  scopus
    17. Mitsou E., “Spin Connection Formulations of Real Lorentzian General Relativity”, Class. Quantum Gravity, 36:4 (2019), 045008  crossref  mathscinet  isi  scopus
    18. Berra-Montiel J., Molgado A., Rodriguez-Lopez A., “Polysymplectic Formulation For Bf Gravity With Immirzi Parameter”, Class. Quantum Gravity, 36:11 (2019), 115003  crossref  mathscinet  isi
    19. Pithis A.G.A. Sakellariadou M., “Group Field Theory Condensate Cosmology: An Appetizer”, Universe, 5:6 (2019), 147  crossref  isi
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:182
    Full text:32

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019