General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

SIGMA, 2012, Volume 8, 034, 25 pages (Mi sigma711)  

This article is cited in 12 scientific papers (total in 12 papers)

Structure theory for extended Kepler–Coulomb 3D classical superintegrable systems

Ernie G. Kalninsa, Willard Miller Jr.b

a Department of Mathematics, University of Waikato, Hamilton, New Zealand
b School of Mathematics, University of Minnesota, Minneapolis, Minnesota, 55455, USA

Abstract: The classical Kepler–Coulomb system in 3 dimensions is well known to be 2nd order superintegrable, with a symmetry algebra that closes polynomially under Poisson brackets. This polynomial closure is typical for 2nd order superintegrable systems in 2D and for 2nd order systems in 3D with nondegenerate (4-parameter) potentials. However the degenerate 3-parameter potential for the 3D extended Kepler–Coulomb system (also 2nd order superintegrable) is an exception, as its quadratic symmetry algebra doesn't close polynomially. The 3D 4-parameter potential for the extended Kepler–Coulomb system is not even 2nd order superintegrable. However, Verrier and Evans (2008) showed it was 4th order superintegrable, and Tanoudis and Daskaloyannis (2011) showed that in the quantum case, if a second 4th order symmetry is added to the generators, the double commutators in the symmetry algebra close polynomially. Here, based on the Tremblay, Turbiner and Winternitz construction, we consider an infinite class of classical extended Kepler–Coulomb 3- and 4-parameter systems indexed by a pair of rational numbers $(k_1,k_2)$ and reducing to the usual systems when $k_1=k_2=1$. We show these systems to be superintegrable of arbitrarily high order and work out explicitly the structure of the symmetry algebras determined by the 5 basis generators we have constructed. We demonstrate that the symmetry algebras close rationally; only for systems admitting extra discrete symmetries is polynomial closure achieved. Underlying the structure theory is the existence of raising and lowering constants of the motion, not themselves polynomials in the momenta, that can be employed to construct the polynomial symmetries and their structure relations.

Keywords: superintegrability, Kepler–Coulomb system.


Full text: PDF file (412 kB)
Full text:
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1202.0197
MSC: 20C35, 22E70, 37J35, 81R12.
Received: March 14, 2012; in final form June 4, 2012; Published online June 7, 2012

Citation: Ernie G. Kalnins, Willard Miller Jr., “Structure theory for extended Kepler–Coulomb 3D classical superintegrable systems”, SIGMA, 8 (2012), 034, 25 pp.

Citation in format AMSBIB
\by Ernie G. Kalnins, Willard Miller Jr.
\paper Structure theory for extended Kepler--Coulomb 3D classical superintegrable systems
\jour SIGMA
\yr 2012
\vol 8
\papernumber 034
\totalpages 25

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kalnins E.G. Kress J.M. Miller Jr. W., “Extended Kepler-Coulomb Quantum Superintegrable Systems in Three Dimensions”, J. Phys. A-Math. Theor., 46:8 (2013), 085206  crossref  mathscinet  zmath  adsnasa  isi  scopus
    2. Kalnins E.G., Kress J.M., Miller Jr. W., “Superintegrability in a Non-Conformally-Flat Space”, J. Phys. A-Math. Theor., 46:2 (2013), 022002  crossref  mathscinet  adsnasa  isi  elib  scopus
    3. Miller Jr. Willard Post S. Winternitz P., “Classical and Quantum Superintegrability with Applications”, J. Phys. A-Math. Theor., 46:42 (2013), 423001  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    4. Panahi H. Alizadeh Z., “Deformed Oscillator Algebra for Quantum Superintegrable Systems in Two-Dimensional Euclidean Space and on a Complex Two-Sphere”, Chin. Phys. B, 22:6 (2013), 060304  crossref  adsnasa  isi  elib  scopus
    5. Celeghini E., Kuru S., Negro J., del Olmo M.A., “A Unified Approach to Quantum and Classical Ttw Systems Based on Factorizations”, Ann. Phys., 332 (2013), 27–37  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    6. Coletti C., Calderini D., Aquilanti V., “D-Dimensional Kepler-Coulomb Sturmians and Hyperspherical Harmonics as Complete Orthonormal Atomic and Molecular Orbitals”, Proceedings of Mest 2012: Exponential Type Orbitals for Molecular Electronic Structure Theory, Adv. Quantum Chem., 67, ed. Hoggan P., Elsevier Academic Press Inc, 2013, 73–127  crossref  isi  scopus
    7. Markakis C., “Constants of Motion in Stationary Axisymmetric Gravitational Fields”, Mon. Not. Roy. Astron. Soc., 441:4 (2014), 2974–2985  crossref  adsnasa  isi  elib  scopus
    8. Hoque M.F. Marquette I. Zhang Ya.-Zh., “Recurrence Approach and Higher Rank Cubic Algebras For the N-Dimensional Superintegrable Systems”, J. Phys. A-Math. Theor., 49:12 (2016), 125201  crossref  mathscinet  zmath  adsnasa  isi  scopus
    9. Ballesteros A. Herranz F.J. Kuru S. Negro J., “The anisotropic oscillator on curved spaces: A new exactly solvable model”, Ann. Phys., 373 (2016), 399–423  crossref  mathscinet  zmath  isi  elib  scopus
    10. S. Kuru, J. Negro, O. Ragnisco, “The Perlick system type I: from the algebra of symmetries to the geometry of the trajectories”, Phys. Lett. A, 381:39 (2017), 3355–3363  crossref  mathscinet  zmath  isi  scopus
    11. M. F. Ranada, “Quasi-bi-Hamiltonian structures, complex functions and superintegrability: the Tremblay–Turbiner–Winternitz (TTW) and the Post–Winternitz (PW) systems”, J. Phys. A-Math. Theor., 50:31 (2017), 315206  crossref  mathscinet  zmath  isi  scopus
    12. C. M. Chanu, G. Rastelli, “Extended Hamiltonians and shift, ladder functions and operators”, Ann. Phys., 386 (2017), 254–274  crossref  mathscinet  zmath  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:109
    Full text:18

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019