RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2012, Volume 8, 040, 16 pages (Mi sigma717)  

This article is cited in 7 scientific papers (total in 7 papers)

The vertex algebra $m(1)^+$ and certain affine vertex algebras of level $-1$

Dražen Adamović, Ozren Perše

Faculty of Science, Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

Abstract: We give a coset realization of the vertex operator algebra $M(1)^+$ with central charge $\ell$. We realize $M(1)^+$ as a commutant of certain affine vertex algebras of level $-1$ in the vertex algebra $L_{C_{\ell}^{(1)}}(-\frac12\Lambda_0)\otimes L_{C_{\ell} ^{(1)}}(-\frac{1}{2}\Lambda_0)$. We show that the simple vertex algebra $L_{C_{\ell}^{(1)}}(-\Lambda_0)$ can be (conformally) embedded into $L_{A_{2 \ell -1}^{(1)}}(-\Lambda_0)$ and find the corresponding decomposition. We also study certain coset subalgebras inside $L_{C_{\ell} ^{(1)}}(-\Lambda_0)$.

Keywords: vertex operator algebra, affine Kac–Moody algebra, coset vertex algebra, conformal embedding, $\mathcal W$-algebra.

DOI: https://doi.org/10.3842/SIGMA.2012.040

Full text: PDF file (458 kB)
Full text: http://emis.mi.ras.ru/.../040
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1006.1752
MSC: 17B69; 17B67; 17B68; 81R10
Received: March 9, 2012; in final form July 1, 2012; Published online July 8, 2012
Language:

Citation: Dražen Adamović, Ozren Perše, “The vertex algebra $m(1)^+$ and certain affine vertex algebras of level $-1$”, SIGMA, 8 (2012), 040, 16 pp.

Citation in format AMSBIB
\Bibitem{AdaPer12}
\by Dra{\v z}en Adamovi{\'c}, Ozren Per{\v s}e
\paper The vertex algebra $m(1)^+$ and certain affine vertex algebras of level $-1$
\jour SIGMA
\yr 2012
\vol 8
\papernumber 040
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma717}
\crossref{https://doi.org/10.3842/SIGMA.2012.040}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2946860}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000306115600001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864858502}


Linking options:
  • http://mi.mathnet.ru/eng/sigma717
  • http://mi.mathnet.ru/eng/sigma/v8/p40

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Adamovic D., Perse O., “Some General Results on Conformal Embeddings of Affine Vertex Operator Algebras”, Algebr. Represent. Theory, 16:1 (2013), 51–64  crossref  mathscinet  zmath  isi  elib  scopus
    2. Creutzig T., Linshaw A.R., “A Commutant Realization of Odake's Algebra”, Transform. Groups, 18:3 (2013), 615–637  crossref  mathscinet  zmath  isi  elib  scopus
    3. Adamovic D., Perse O., “Fusion Rules and Complete Reducibility of Certain Modules for Affine Lie Algebras”, J. Algebra. Appl., 13:1 (2014)  crossref  mathscinet  isi  scopus
    4. D. Adamovic, O. Perse, “On extensions of affine vertex algebras at half-integer levels”, Springer INdAM Series, 19 (2017), 281-298  crossref  mathscinet  zmath  scopus
    5. Arakawa T., Jiang C., “Coset Vertex Operator Algebras and W-Algebras of a-Type”, Sci. China-Math., 61:2, SI (2018), 191–206  crossref  mathscinet  zmath  isi  scopus
    6. Adamovic D., Kac V.G., Frajria P.M., Papi P., Perse O., “On the Classification of Non-Equal Rank Affine Conformal Embeddings and Applications”, Sel. Math.-New Ser., 24:3 (2018), 2455–2498  crossref  mathscinet  zmath  isi  scopus
    7. Creutzig T., Linshaw A.R., “Cosets of Affine Vertex Algebras Inside Larger Structures”, J. Algebra, 517 (2019), 396–438  crossref  mathscinet  zmath  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:131
    Full text:21
    References:40

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019