RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2012, Volume 8, 041, 12 pages (Mi sigma718)  

This article is cited in 7 scientific papers (total in 7 papers)

Harmonic oscillator SUSY partners and evolution loops

David J. Fernández

Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F., México

Abstract: Supersymmetric quantum mechanics is a powerful tool for generating exactly solvable potentials departing from a given initial one. If applied to the harmonic oscillator, a family of Hamiltonians ruled by polynomial Heisenberg algebras is obtained. In this paper it will be shown that the SUSY partner Hamiltonians of the harmonic oscillator can produce evolution loops. The corresponding geometric phases will be as well studied.

Keywords: supersymmetric quantum mechanics, quantum harmonic oscillator, polynomial Heisenberg algebra, geometric phase.

DOI: https://doi.org/10.3842/SIGMA.2012.041

Full text: PDF file (450 kB)
Full text: http://emis.mi.ras.ru/.../041
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1205.6239
MSC: 81Q60; 81Q05; 81Q70
Received: May 28, 2012; in final form July 4, 2012; Published online July 11, 2012
Language:

Citation: David J. Fernández, “Harmonic oscillator SUSY partners and evolution loops”, SIGMA, 8 (2012), 041, 12 pp.

Citation in format AMSBIB
\Bibitem{Fer12}
\by David J. Fern\'andez
\paper Harmonic oscillator SUSY partners and evolution loops
\jour SIGMA
\yr 2012
\vol 8
\papernumber 041
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma718}
\crossref{https://doi.org/10.3842/SIGMA.2012.041}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2946859}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000306210200001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864844440}


Linking options:
  • http://mi.mathnet.ru/eng/sigma718
  • http://mi.mathnet.ru/eng/sigma/v8/p41

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Vamegh S. Al Modares, Tavassoly M.K., “Geometric Phases of Nonlinear Coherent and Squeezed States: a New Approach”, J. Phys. B-At. Mol. Opt. Phys., 46:1 (2013), 015503  crossref  adsnasa  isi  elib  scopus
    2. Tavassoly M.K., Jalali H.R., “Barut-Girardello and Gilmore-Perelomov Coherent States for Pseudoharmonic Oscillators and their Nonclassical Properties: Factorization Method”, Chin. Phys. B, 22:8 (2013), 084202  crossref  isi  scopus
    3. Mielnik B., “Quantum Operations: Technical Or Fundamental Challenge?”, J. Phys. A-Math. Theor., 46:38 (2013), 385301  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    4. Mielnik B., “Quantum Control: Discovered, Repeated and Reformulated Ideas Mark the Progress”, 8Th International Symposium on Quantum Theory and Symmetries (Qts8), Journal of Physics Conference Series, 512, IOP Publishing Ltd, 2014, 012035  crossref  mathscinet  isi  scopus
    5. Diaz-Bautista E., Fernandez Cabrera D.J., “Nonlinear supercoherent states and geometric phases for the supersymmetric harmonic oscillator”, Eur. Phys. J. Plus, 131:5 (2016), 151  crossref  isi  elib  scopus
    6. Castillo-Celeita M., Diaz-Bautista E., Fernandez C D.J., “Polynomial Heisenberg Algebras, Multiphoton Coherent States and Geometric Phases”, Phys. Scr., 94:4 (2019), 045203  crossref  mathscinet  isi  scopus
    7. Diaz-Bautista E., Fernandez C D.J., “Multiphoton Supercoherent States”, Eur. Phys. J. Plus, 134:2 (2019), 61  crossref  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:120
    Full text:34
    References:47

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019