RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2012, Volume 8, 048, 58 pages (Mi sigma725)  

This article is cited in 33 scientific papers (total in 33 papers)

Isolated horizons and black hole entropy in Loop Quantum Gravity

Jacobo Diaz-Poloa, Daniele Pranzettib

a Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USA
b Max Planck Institute for Gravitational Physics (AEI), Am Mühlenberg 1, D-14476 Golm, Germany

Abstract: We review the black hole entropy calculation in the framework of Loop Quantum Gravity based on the quasi-local definition of a black hole encoded in the isolated horizon formalism. We show, by means of the covariant phase space framework, the appearance in the conserved symplectic structure of a boundary term corresponding to a Chern–Simons theory on the horizon and present its quantization both in the $U(1)$ gauge fixed version and in the fully $SU(2)$ invariant one. We then describe the boundary degrees of freedom counting techniques developed for an infinite value of the Chern–Simons level case and, less rigorously, for the case of a finite value. This allows us to perform a comparison between the $U(1)$ and $SU(2)$ approaches and provide a state of the art analysis of their common features and different implications for the entropy calculations. In particular, we comment on different points of view regarding the nature of the horizon degrees of freedom and the role played by the Barbero–Immirzi parameter. We conclude by presenting some of the most recent results concerning possible observational tests for theory.

Keywords: black hole entropy, quantum gravity, isolated horizons.

DOI: https://doi.org/10.3842/SIGMA.2012.048

Full text: PDF file (1101 kB)
Full text: http://emis.mi.ras.ru/.../048
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1112.0291
MSC: 53Z05; 81S05; 83C57
Received: December 2, 2011; in final form July 18, 2012; Published online August 1, 2012
Language:

Citation: Jacobo Diaz-Polo, Daniele Pranzetti, “Isolated horizons and black hole entropy in Loop Quantum Gravity”, SIGMA, 8 (2012), 048, 58 pp.

Citation in format AMSBIB
\Bibitem{DiaPra12}
\by Jacobo Diaz-Polo, Daniele Pranzetti
\paper Isolated horizons and black hole entropy in Loop Quantum Gravity
\jour SIGMA
\yr 2012
\vol 8
\papernumber 048
\totalpages 58
\mathnet{http://mi.mathnet.ru/sigma725}
\crossref{https://doi.org/10.3842/SIGMA.2012.048}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2958982}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000306990800001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864835194}


Linking options:
  • http://mi.mathnet.ru/eng/sigma725
  • http://mi.mathnet.ru/eng/sigma/v8/p48

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Lochan K., Vaz C., “Statistical Analysis of Entropy Correction From Topological Defects in Loop Black Holes”, Phys. Rev. D, 86:4 (2012), 044035  crossref  mathscinet  adsnasa  isi  elib  scopus
    2. Pithis A.G.A., “Gibbs Paradox, Black Hole Entropy, and the Thermodynamics of Isolated Horizons”, Phys. Rev. D, 87:8 (2013), 084061  crossref  adsnasa  isi  elib  scopus
    3. Livine E.R., “Deformations of Polyhedra and Polygons by the Unitary Group”, J. Math. Phys., 54:12 (2013), 123504  crossref  mathscinet  zmath  adsnasa  isi  scopus
    4. Bodendorfer N., “Black Hole Entropy From Loop Quantum Gravity in Higher Dimensions”, Phys. Lett. B, 726:4-5 (2013), 887–891  crossref  mathscinet  zmath  adsnasa  isi  scopus
    5. Pranzetti D., “Dynamical Evaporation of Quantum Horizons”, Class. Quantum Gravity, 30:16 (2013), 165004  crossref  mathscinet  zmath  adsnasa  isi  scopus
    6. Bodendorfer N., Thiemann T., Thurn A., “New Variables for Classical and Quantum Gravity in All Dimensions: V. Isolated Horizon Boundary Degrees of Freedom”, Class. Quantum Gravity, 31:5 (2014), 055002  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    7. Wang J., Ma Y., Zhao X.-A., “Bf Theory Explanation of the Entropy for Nonrotating Isolated Horizons”, Phys. Rev. D, 89:8 (2014), 084065  crossref  adsnasa  isi  scopus
    8. Pranzetti D., “Turaev-Viro Amplitudes From 2+1 Loop Quantum Gravity”, Phys. Rev. D, 89:8 (2014), 084058  crossref  mathscinet  adsnasa  isi  elib  scopus
    9. Ghosh A., Pranzetti D., “Cft/Gravity Correspondence on the Isolated Horizon”, Nucl. Phys. B, 889 (2014), 1–24  crossref  mathscinet  zmath  adsnasa  isi  scopus
    10. Frodden E., Perez A., Pranzetti D., Roeken Ch., “Modelling Black Holes With Angular Momentum in Loop Quantum Gravity”, Gen. Relativ. Gravit., 46:12 (2014), 1828  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    11. Bodendorfer N., Neiman Y., “Wald Entropy Formula and Loop Quantum Gravity”, Phys. Rev. D, 90:8 (2014), 084054  crossref  mathscinet  adsnasa  isi  scopus
    12. Pranzetti D., “Geometric Temperature and Entropy of Quantum Isolated Horizons”, Phys. Rev. D, 89:10 (2014), 104046  crossref  adsnasa  isi  elib  scopus
    13. Rivasseau V., “Tensorial Methods and Renormalization in Group Field Theories Introduction and Motivation”: Carrozza, S, Tensorial Methods and Renormalization in Group Field Theories, Springer Theses-Recognizing Outstanding Phd Research, Springer-Verlag Berlin, 2014, 1–15  mathscinet  isi
    14. Livine E.R., “Deformation Operators of Spin Networks and Coarse-Graining”, Class. Quantum Gravity, 31:7 (2014), 075004  crossref  mathscinet  zmath  isi  scopus
    15. Perez A., “No Firewalls in Quantum Gravity: the Role of Discreteness of Quantum Geometry in Resolving the Information Loss Paradox”, Class. Quantum Gravity, 32:8 (2015), 084001  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    16. Pithis A.G.A. Euler H.-Ch.R., “Anyonic Statistics and Large Horizon Diffeomorphisms For Loop Quantum Gravity Black Holes”, Phys. Rev. D, 91:6 (2015), 064053  crossref  mathscinet  adsnasa  isi  elib  scopus
    17. Oriti D. Pranzetti D. Ryan J.P. Sindoni L., “Generalized Quantum Gravity Condensates For Homogeneous Geometries and Cosmology”, Class. Quantum Gravity, 32:23 (2015), 235016  crossref  mathscinet  zmath  adsnasa  isi  scopus
    18. Pranzetti D., Sahlmann H., “Horizon Entropy With Loop Quantum Gravity Methods”, Phys. Lett. B, 746 (2015), 209–216  crossref  mathscinet  zmath  adsnasa  isi  scopus
    19. Steffen Gielen, Lorenzo Sindoni, “Quantum Cosmology from Group Field Theory Condensates: a Review”, SIGMA, 12 (2016), 082, 49 pp.  mathnet  crossref
    20. Djordjevic G.S., Nesic L., Radovancevic D., “Two-oscillator Kantowski–Sachs model of the Schwarzschild black hole interior”, Gen. Relativ. Gravit., 48:8 (2016), 106  crossref  mathscinet  zmath  isi  elib  scopus
    21. Bodendorfer N., “Some notes on the Kodama state, maximal symmetry, and the isolated horizon boundary condition”, Phys. Rev. D, 93:12 (2016), 124042  crossref  mathscinet  isi  scopus
    22. Olmedo J., “Brief Review on Black Hole Loop Quantization”, Universe, 2:2 (2016), UNSP 12  crossref  isi
    23. Oriti D., Pranzetti D., Sindoni L., “Horizon Entropy from Quantum Gravity Condensates”, Phys. Rev. Lett., 116:21 (2016), 211301  crossref  isi  scopus
    24. Ch. Roeken, “Kerr isolated horizons in Ashtekar and Ashtekar–Barbero connection variables”, Gen. Relativ. Gravit., 49:9 (2017), 114  crossref  mathscinet  zmath  isi  scopus
    25. A. Perez, “Black holes in loop quantum gravity”, Rep. Prog. Phys., 80:12 (2017), 126901  crossref  mathscinet  isi  scopus
    26. A. Coley, D. McNutt, “Identification of black hole horizons using scalar curvature invariants”, Class. Quantum Gravity, 35:2 (2018), 025013  crossref  mathscinet  zmath  isi  scopus
    27. D. Oriti, D. Pranzetti, L. Sindoni, “Black holes as quantum gravity condensates”, Phys. Rev. D, 97:6 (2018), 066017  crossref  isi  scopus
    28. G. Chirco, D. Oriti, M. Zhang, “Group field theory and tensor networks: towards a ryu-takayanagi formula in full quantum gravity”, Class. Quantum Gravity, 35:11 (2018), 115011  crossref  mathscinet  isi  scopus
    29. K. Eder, H. Sahlmann, “Quantum theory of charged isolated horizons”, Phys. Rev. D, 97:8 (2018), 086016  crossref  isi  scopus
    30. E. Alesci, C. Pacilio, D. Pranzetti, “Orthogonal gauge fixing of first order gravity”, Phys. Rev. D, 98:4 (2018), 044052  crossref  isi  scopus
    31. E. Alesci, S. Bahrami, D. Pranzetti, “Quantum evolution of black hole initial data sets: foundations”, Phys. Rev. D, 98:4 (2018), 046014  crossref  isi  scopus
    32. I. Kotecha, D. Oriti, “Statistical equilibrium in quantum gravity: gibbs states in group field theory”, New J. Phys., 20 (2018), 073009  crossref  isi  scopus
    33. Barrau A., Martineau K., Moulin F., “A Status Report on the Phenomenology of Black Holes in Loop Quantum Gravity: Evaporation, Tunneling to White Holes, Dark Matter and Gravitational Waves”, Universe, 4:10 (2018), 102  crossref  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:465
    Full text:45
    References:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019