RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2012, Volume 8, 050, 31 pages (Mi sigma727)  

This article is cited in 18 scientific papers (total in 18 papers)

Holomorphic quantization of linear field theory in the general boundary formulation

Robert Oeckl

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Campus Morelia, C.P. 58190, Morelia, Michoacán, Mexico

Abstract: We present a rigorous quantization scheme that yields a quantum field theory in general boundary form starting from a linear field theory. Following a geometric quantization approach in the Kähler case, state spaces arise as spaces of holomorphic functions on linear spaces of classical solutions in neighborhoods of hypersurfaces. Amplitudes arise as integrals of such functions over spaces of classical solutions in regions of spacetime. We prove the validity of the TQFT-type axioms of the general boundary formulation under reasonable assumptions. We also develop the notions of vacuum and coherent states in this framework. As a first application we quantize evanescent waves in Klein–Gordon theory.

Keywords: geometric quantization, topological quantum field theory, coherent states, foundations of quantum theory, quantum field theory.

DOI: https://doi.org/10.3842/SIGMA.2012.050

Full text: PDF file (549 kB)
Full text: http://emis.mi.ras.ru/.../050
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1009.5615
MSC: 57R56; 81S10; 81T05; 81T20
Received: April 27, 2012; in final form August 3, 2012; Published online August 9, 2012
Language:

Citation: Robert Oeckl, “Holomorphic quantization of linear field theory in the general boundary formulation”, SIGMA, 8 (2012), 050, 31 pp.

Citation in format AMSBIB
\Bibitem{Oec12}
\by Robert Oeckl
\paper Holomorphic quantization of linear field theory in the general boundary formulation
\jour SIGMA
\yr 2012
\vol 8
\papernumber 050
\totalpages 31
\mathnet{http://mi.mathnet.ru/sigma727}
\crossref{https://doi.org/10.3842/SIGMA.2012.050}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2958980}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000307374600001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865814482}


Linking options:
  • http://mi.mathnet.ru/eng/sigma727
  • http://mi.mathnet.ru/eng/sigma/v8/p50

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Daniele Colosi, Dennis Rätzel, “The Unruh Effect in General Boundary Quantum Field Theory”, SIGMA, 9 (2013), 019, 22 pp.  mathnet  crossref  mathscinet
    2. Robert Oeckl, “Free Fermi and Bose Fields in TQFT and GBF”, SIGMA, 9 (2013), 028, 46 pp.  mathnet  crossref  mathscinet
    3. Perez A., “The Spin-Foam Approach to Quantum Gravity”, Living Rev. Relativ., 16 (2013), 3  crossref  zmath  adsnasa  isi  elib  scopus
    4. Banisch R. Hellmann F. Raetzel D., “The Unruh-Dewitt Detector and the Vacuum in the General Boundary Formalism”, Class. Quantum Gravity, 30:23 (2013), 235026  crossref  mathscinet  zmath  adsnasa  isi  scopus
    5. Colosi D. Raetzel D., “Quantum Field Theory on Timelike Hypersurfaces in Rindler Space”, Phys. Rev. D, 87:12 (2013), 125001  crossref  adsnasa  isi  elib  scopus
    6. Dohse M., “Classical Klein-Gordon Solutions, Symplectic Structures, and Isometry Actions on Ads Spacetimes”, J. Geom. Phys., 70 (2013), 130–156  crossref  mathscinet  zmath  adsnasa  isi  scopus
    7. Arjang M., Zapata J.A., “Multisymplectic Effective General Boundary Field Theory”, Class. Quantum Gravity, 31:9 (2014)  crossref  mathscinet  zmath  isi  scopus
    8. Hoehn Ph.A., “Quantization of Systems With Temporally Varying Discretization. i. Evolving Hilbert Spaces”, J. Math. Phys., 55:8 (2014), 083508  crossref  mathscinet  zmath  adsnasa  isi  scopus
    9. Oeckl R., “Schrodinger-Feynman Quantization and Composition of Observables in General Boundary Quantum Field Theory”, Adv. Theor. Math. Phys., 19:2 (2015), 451–506  crossref  mathscinet  zmath  isi  scopus
    10. Homero G. Díaz-Maríin, “General Boundary Formulation for $n$-Dimensional Classical Abelian Theory with Corners”, SIGMA, 11 (2015), 048, 35 pp.  mathnet  crossref  mathscinet
    11. Colosi D., “in-Out Propagator in de Sitter Space From General Boundary Quantum Field Theory”, Phys. Lett. B, 748 (2015), 70–73  crossref  zmath  adsnasa  isi  scopus
    12. Dohse M., Oeckl R., “Complex Structures For An S-Matrix of Klein-Gordon Theory on Ads Spacetimes”, Class. Quantum Gravity, 32:10 (2015), 105007  crossref  mathscinet  zmath  adsnasa  isi  scopus
    13. Colosi D., “An Introduction To the General Boundary Formulation of Quantum Field Theory”, 7th international workshop dice2014 spacetime - matter - quantum mechanics, Journal of Physics Conference Series, 626, ed. Diosi L. Elze H. Fronzoni L. Halliwell J. Kiefer C. Prati E. Vitiello G., IOP Publishing Ltd, 2015, 012031  crossref  isi  scopus
    14. D. Colosi, M. Dohse, “The $S$-matrix in Schrödinger representation for curved spacetimes in general boundary quantum field theory”, J. Geom. Phys., 114 (2017), 65–84  crossref  mathscinet  zmath  isi  scopus
    15. H. G. Diaz-Marin, “Dirichlet to Neumann operator for abelian Yang–Mills gauge fields”, Int. J. Geom. Methods Mod. Phys., 14:11 (2017), 1750153  crossref  mathscinet  zmath  isi  scopus
    16. D. Colosi, M. Dohse, “Complex structures and quantum representations for scalar QFT in curved spacetimes”, Int. J. Theor. Phys., 56:11 (2017), 3359–3386  crossref  mathscinet  zmath  isi  scopus
    17. Homero G. Díaz-Marín, Robert Oeckl, “Quantum Abelian Yang–Mills Theory on Riemannian Manifolds with Boundary”, SIGMA, 14 (2018), 105, 31 pp.  mathnet  crossref
    18. Oeckl R., “Coherent States in Fermionic Fock-Krein Spaces and Their Amplitudes”, Coherent States and Their Applications: a Contemporary Panorama, Springer Proceedings in Physics, 205, ed. Antoine J. Bagarello F. Gazeau J., Springer-Verlag Berlin, 2018, 243–263  crossref  mathscinet  zmath  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:172
    Full text:29
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019