RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2012, Volume 8, 081, 18 pages (Mi sigma758)  

Entanglement properties of a higher-integer-spin AKLT model with quantum group symmetry

Chikashi Aritaa, Kohei Motegib

a Institut de Physique Théorique CEA, F-91191 Gif-sur-Yvette, France
b Okayama Institute for Quantum Physics, Kyoyama 1-9-1, Okayama 700-0015, Japan

Abstract: We study the entanglement properties of a higher-integer-spin Affleck–Kennedy–Lieb–Tasaki model with quantum group symmetry in the periodic boundary condition. We exactly calculate the finite size correction terms of the entanglement entropies from the double scaling limit. We also evaluate the geometric entanglement, which serves as another measure for entanglement. We find the geometric entanglement reaches its maximum at the isotropic point, and decreases with the increase of the anisotropy. This behavior is similar to that of the entanglement entropies.

Keywords: valence-bond-solid state; entanglement; quantum group.

DOI: https://doi.org/10.3842/SIGMA.2012.081

Full text: PDF file (662 kB)
Full text: http://emis.mi.ras.ru/.../081
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1206.3653
MSC: 17B37; 81V70; 82B23
Received: July 6, 2012; in final form October 23, 2012; Published online October 27, 2012
Language:

Citation: Chikashi Arita, Kohei Motegi, “Entanglement properties of a higher-integer-spin AKLT model with quantum group symmetry”, SIGMA, 8 (2012), 081, 18 pp.

Citation in format AMSBIB
\Bibitem{AriMot12}
\by Chikashi Arita, Kohei Motegi
\paper Entanglement properties of a higher-integer-spin AKLT model with quantum group symmetry
\jour SIGMA
\yr 2012
\vol 8
\papernumber 081
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma758}
\crossref{https://doi.org/10.3842/SIGMA.2012.081}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3007278}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000312377300001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84869015959}


Linking options:
  • http://mi.mathnet.ru/eng/sigma758
  • http://mi.mathnet.ru/eng/sigma/v8/p81

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:115
    Full text:15
    References:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019