|
|
SIGMA, 2012, Volume 8, 088, 16 pages
(Mi sigma765)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Nekrasov's Partition Function and Refined Donaldson–Thomas Theory: the Rank One Case
Balázs Szendrői Mathematical Institute, University of Oxford, UK
Abstract:
This paper studies geometric engineering, in the simplest possible case of rank one (Abelian) gauge theory on the affine plane and the resolved conifold. We recall the identification between Nekrasov's partition function and a version of refined Donaldson–Thomas theory, and study the relationship between the underlying vector spaces. Using a purity result, we identify the vector space underlying refined Donaldson–Thomas theory on the conifold geometry as the exterior space of the space of polynomial functions on the affine plane, with the (Lefschetz) $\mathrm{SL}(2)$-action on the threefold side being dual to the geometric $\mathrm{SL}(2)$-action on the affine plane. We suggest that the exterior space should be a module for the (explicitly not yet known) cohomological Hall algebra (algebra of BPS states) of the conifold.
Keywords:
geometric engineering; Donaldson–Thomas theory; resolved conifold
DOI:
https://doi.org/10.3842/SIGMA.2012.088
Full text:
PDF file (451 kB)
Full text:
http://emis.mi.ras.ru/.../088
References:
PDF file
HTML file
Bibliographic databases:
ArXiv:
1210.5181
MSC: 14J32 Received: June 12, 2012; in final form November 5, 2012; Published online November 17, 2012
Language:
Citation:
Balázs Szendrői, “Nekrasov's Partition Function and Refined Donaldson–Thomas Theory: the Rank One Case”, SIGMA, 8 (2012), 088, 16 pp.
Citation in format AMSBIB
\Bibitem{Sze12}
\by Bal\'azs~Szendr{\H o}i
\paper Nekrasov's Partition Function and Refined Donaldson--Thomas Theory: the~Rank One Case
\jour SIGMA
\yr 2012
\vol 8
\papernumber 088
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma765}
\crossref{https://doi.org/10.3842/SIGMA.2012.088}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3007271}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000312378500001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870031642}
Linking options:
http://mi.mathnet.ru/eng/sigma765 http://mi.mathnet.ru/eng/sigma/v8/p88
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Nakajima H., “Refined Chern-Simons Theory and Hilbert Schemes of Points on the Plane”, Perspectives in Representation Theory: a Conference in Honor of Igor Frenkel'S 60Th Birthday on Perspectives in Representation Theory, Contemporary Mathematics, 610, eds. Etingof P., Khovanov M., Savage A., Amer Mathematical Soc, 2014, 305–331
-
Ben Davison, Maulik D., Schuermann J., Szendroi B., “Purity For Graded Potentials and Quantum Cluster Positivity”, Compos. Math., 151:10 (2015), 1913–1944
-
Hayashi H., Piazzalunga N., Uranga A.M., “Towards a Gauge Theory Interpretation of the Real Topological String”, Phys. Rev. D, 93:6 (2016), 066001
-
Szendroi B., “Cohomological Donaldson-Thomas Theory”, String-Math 2014, Proceedings of Symposia in Pure Mathematics, 93, eds. Bouchard V., Doran C., MendezDiez S., Quigley C., Amer Mathematical Soc, 2016, 363+
|
| Number of views: |
| This page: | 211 | | Full text: | 67 | | References: | 18 |
|