RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2012, Volume 8, 089, 31 pages (Mi sigma766)  

This article is cited in 5 scientific papers (total in 5 papers)

Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables

Philip Broadbridgea, Claudia M. Chanub, Willard Miller Jr.c

a School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, Australia
b Dipartimento di Matematica G. Peano, Università di Torino, Torino, Italy
c School of Mathematics, University of Minnesota, Minneapolis, Minnesota, 55455, USA

Abstract: Olver and Rosenau studied group-invariant solutions of (generally nonlinear) partial differential equations through the imposition of a side condition. We apply a similar idea to the special case of finite-dimensional Hamiltonian systems, namely Hamilton–Jacobi, Helmholtz and time-independent Schrödinger equations with potential on $N$-dimensional Riemannian and pseudo-Riemannian manifolds, but with a linear side condition, where more structure is available. We show that the requirement of $N-1$ commuting second-order symmetry operators, modulo a second-order linear side condition corresponds to nonregular separation of variables in an orthogonal coordinate system, characterized by a generalized Stäckel matrix. The coordinates and solutions obtainable through true nonregular separation are distinct from those arising through regular separation of variables. We develop the theory for these systems and provide examples.

Keywords: nonregular separation of variables; Helmholtz equation; Schrödinger equation

DOI: https://doi.org/10.3842/SIGMA.2012.089

Full text: PDF file (493 kB)
Full text: http://emis.mi.ras.ru/.../089
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1209.2019
MSC: 35Q40; 35J05
Received: September 21, 2012; in final form November 19, 2012; Published online November 26, 2012
Language:

Citation: Philip Broadbridge, Claudia M. Chanu, Willard Miller Jr., “Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables”, SIGMA, 8 (2012), 089, 31 pp.

Citation in format AMSBIB
\Bibitem{BroChaMil12}
\by Philip~Broadbridge, Claudia~M.~Chanu, Willard~Miller~Jr.
\paper Solutions of Helmholtz and Schr\"odinger Equations with Side Condition and Nonregular Separation of Variables
\jour SIGMA
\yr 2012
\vol 8
\papernumber 089
\totalpages 31
\mathnet{http://mi.mathnet.ru/sigma766}
\crossref{https://doi.org/10.3842/SIGMA.2012.089}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3007270}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000312378600001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870309828}


Linking options:
  • http://mi.mathnet.ru/eng/sigma766
  • http://mi.mathnet.ru/eng/sigma/v8/p89

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Andrey V. Tsiganov, “On a Trivial Family of Noncommutative Integrable Systems”, SIGMA, 9 (2013), 015, 13 pp.  mathnet  crossref  mathscinet
    2. Miller Jr. Willard, Turbiner A.V., “Particle in a Field of Two Centers in Prolate Spheroidal Coordinates: Integrability and Solvability”, J. Phys. A-Math. Theor., 47:19 (2014), 192002  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    3. Gaeta G., “Symmetry and Lie–Frobenius Reduction of Differential Equations”, J. Phys. A-Math. Theor., 48:1 (2015), 015202  crossref  mathscinet  zmath  adsnasa  isi  scopus
    4. Kholodenko A.L., Kauffman L.H., “Huygens Triviality of the Time-Independent Schrodinger Equation. Applications to Atomic and High Energy Physics”, Ann. Phys., 390 (2018), 1–59  crossref  mathscinet  zmath  isi  scopus
    5. Claudia Maria Chanu, Giovanni Rastelli, “Block-Separation of Variables: a Form of Partial Separation for Natural Hamiltonians”, SIGMA, 15 (2019), 013, 22 pp.  mathnet  crossref
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:188
    Full text:18
    References:35

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019