General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

SIGMA, 2012, Volume 8, 098, 73 pages (Mi sigma775)  

This article is cited in 15 scientific papers (total in 15 papers)

Loop Quantum Gravity Phenomenology: Linking Loops to Observational Physics

Florian Girelliab, Franz Hinterleitnerc, Seth A. Majord

a University Erlangen-Nuremberg, Institute for Theoretical Physics III, Erlangen, Germany
b Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
c Department of Theoretical Physics and Astrophysics, Faculty of Science of the Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
d Department of Physics, Hamilton College, Clinton NY 13323, USA

Abstract: Research during the last decade demonstrates that effects originating on the Planck scale are currently being tested in multiple observational contexts. In this review we discuss quantum gravity phenomenological models and their possible links to loop quantum gravity. Particle frameworks, including kinematic models, broken and deformed Poincaré symmetry, non-commutative geometry, relative locality and generalized uncertainty principle, and field theory frameworks, including Lorentz violating operators in effective field theory and non-commutative field theory, are discussed. The arguments relating loop quantum gravity to models with modified dispersion relations are reviewed, as well as, arguments supporting the preservation of local Lorentz invariance. The phenomenology related to loop quantum cosmology is briefly reviewed, with a focus on possible effects that might be tested in the near future. As the discussion makes clear, there remains much interesting work to do in establishing the connection between the fundamental theory of loop quantum gravity and these specific phenomenological models, in determining observational consequences of the characteristic aspects of loop quantum gravity, and in further refining current observations. Open problems related to these developments are highlighted.

Keywords: quantum gravity; loop quantum gravity; quantum gravity phenomenology; modified dispersion relation


Full text: PDF file (1291 kB)
Full text:
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1210.1485
MSC: 83-02; 83B05; 83C45; 83C47; 83C65
Received: May 30, 2012; in final form December 3, 2012; Published online December 13, 2012

Citation: Florian Girelli, Franz Hinterleitner, Seth A. Major, “Loop Quantum Gravity Phenomenology: Linking Loops to Observational Physics”, SIGMA, 8 (2012), 098, 73 pp.

Citation in format AMSBIB
\by Florian~Girelli, Franz~Hinterleitner, Seth~A.~Major
\paper Loop Quantum Gravity Phenomenology: Linking Loops to Observational Physics
\jour SIGMA
\yr 2012
\vol 8
\papernumber 098
\totalpages 73

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Xiao K., He X.-K., Zhu J.-Ya., “Note on the Super-Inflation in Loop Quantum Cosmology”, Phys. Lett. B, 727:4-5 (2013), 349–356  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    2. Dupuis M., Girelli F., “Quantum Hyperbolic Geometry in Loop Quantum Gravity with Cosmological Constant”, Phys. Rev. D, 87:12 (2013), 121502  crossref  mathscinet  adsnasa  isi  elib  scopus
    3. Satunin P., “Width of Photon Decay in a Magnetic Field: Elementary Semiclassical Derivation and Sensitivity to Lorentz Violation”, Phys. Rev. D, 87:10 (2013), 105015  crossref  adsnasa  isi  elib  scopus
    4. Linsefors L., Cailleteau T., Barrau A., Grain J., “Primordial Tensor Power Spectrum in Holonomy Corrected Omega Loop Quantum Cosmology”, Phys. Rev. D, 87:10 (2013), 107503  crossref  adsnasa  isi  scopus
    5. S. A. Major, J. C. Zappala, “Granularity in angle: Observability in scattering experiments”, Springer Proceedings in Physics, 157 (2014), 547–554  crossref  scopus
    6. Barrau A. Bojowald M. Calcagni G. Grain J. Kagan M., “Anomaly-Free Cosmological Perturbations in Effective Canonical Quantum Gravity”, J. Cosmol. Astropart. Phys., 2015, no. 5, 051  crossref  mathscinet  isi  scopus
    7. O. M. Lecian, “Semiclassical length measure from a quantum-gravity wave function”, Technologies, 5:3, SI (2017), 56  crossref  isi
    8. G. Tomar, “Lorentz invariance violation as an explanation of the muon excess in Auger data”, Phys. Rev. D, 95:9 (2017), 095035  crossref  isi  scopus
    9. G. Rubtsov, P. Satunin, S. Sibiryakov, “Constraints on violation of Lorentz invariance from atmospheric showers initiated by multi-TeV photons”, J. Cosmol. Astropart. Phys., 2017, no. 5, 049  crossref  isi
    10. P. Satunin, “One-loop correction to the photon velocity in Lorentz-violating qed”, Phys. Rev. D, 97:12 (2018), 125016  crossref  isi  scopus
    11. J. Ben Achour, S. Brahma, “Covariance in self-dual inhomogeneous models of effective quantum geometry: spherical symmetry and gowdy systems”, Phys. Rev. D, 97:12 (2018), 126003  crossref  isi  scopus
    12. Dubey A.K., Sen A.K., Nath S., “The Variation of Photon Speed With Photon Frequency in Quantum Gravity”, Indian J. Phys., 92:10 (2018), 1319–1323  crossref  isi  scopus
    13. Oshita N., Afshordi N., “Probing Microstructure of Black Hole Spacetimes With Gravitational Wave Echoes”, Phys. Rev. D, 99:4 (2019), 044002  crossref  mathscinet  isi  scopus
    14. Nilsson N.A., Czuchry E., “Horava-Lifshitz Cosmology in Light of New Data”, Phys. Dark Universe, 23 (2019), UNSP 100253  crossref  isi  scopus
    15. Astapov K., Kirpichnikov D., Satunin P., “Photon Splitting Constraint on Lorentz Invariance Violation From Crab Nebula Spectrum”, J. Cosmol. Astropart. Phys., 2019, no. 4, 054  crossref  isi
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:166
    Full text:33

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019