Symmetry, Integrability and Geometry: Methods and Applications
General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

SIGMA, 2013, Volume 9, 058, 23 pp. (Mi sigma841)  

This article is cited in 13 scientific papers (total in 13 papers)

Bethe Vectors of Quantum Integrable Models with $\mathrm{GL}(3)$ Trigonometric $R$-Matrix

Samuel Belliarda, Stanislav Pakuliakbcd, Eric Ragoucye, Nikita A. Slavnovf

a Université Montpellier 2, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier, France
b Institute of Theoretical and Experimental Physics, 117259  Moscow, Russia
c Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow reg., Russia
d Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow reg., Russia
e Laboratoire de Physique Théorique LAPTH, CNRS and Université de Savoie, BP 110, 74941 Annecy-le-Vieux Cedex, France
f Steklov Mathematical Institute, Moscow, Russia

Abstract: We study quantum integrable models with $\mathrm{GL}(3)$ trigonometric $R$-matrix and solvable by the nested algebraic Bethe ansatz. Using the presentation of the universal Bethe vectors in terms of projections of products of the currents of the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_3)$ onto intersections of different types of Borel subalgebras, we prove that the set of the nested Bethe vectors is closed under the action of the elements of the monodromy matrix.

Keywords: nested algebraic Bethe ansatz; Bethe vector; current algebra.

Funding Agency Grant Number
Russian Foundation for Basic Research 11-01-00980-a
National Research University Higher School of Economics 12-09-0064
Agence Nationale de la Recherche 2010-BLAN-0120-02
Ministry of Education and Science of the Russian Federation SS-4612.2012.1
Work of S.P. was supported in part by RFBR grant 11-01-00980-a and grant of Scientific Foundation of NRU HSE 12-09-0064. E.R. was supported by ANR Project DIADEMS (Programme Blanc ANR SIMI1 2010-BLAN-0120-02). N.A.S. was supported by the Program of RAS Basic Problems of the Nonlinear Dynamics, RFBR-11-01-00440, SS-4612.2012.1.


Full text: PDF file (547 kB)
Full text:
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1304.7602
MSC: 81R50; 17B80
Received: May 27, 2013; in final form September 27, 2013; Published online October 7, 2013

Citation: Samuel Belliard, Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Bethe Vectors of Quantum Integrable Models with $\mathrm{GL}(3)$ Trigonometric $R$-Matrix”, SIGMA, 9 (2013), 058, 23 pp.

Citation in format AMSBIB
\by Samuel~Belliard, Stanislav~Pakuliak, Eric~Ragoucy, Nikita~A.~Slavnov
\paper Bethe Vectors of Quantum Integrable Models with $\mathrm{GL}(3)$ Trigonometric $R$-Matrix
\jour SIGMA
\yr 2013
\vol 9
\papernumber 058
\totalpages 23

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with a $GL(3)$ trigonometric $R$-matrix: Highest coefficient”, Theoret. and Math. Phys., 178:3 (2014), 314–335  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with the $GL(3)$ trigonometric $R$-matrix: General case”, Theoret. and Math. Phys., 180:1 (2014), 795–814  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    3. Pakuliak S., Ragoucy E., Slavnov N.A., “Bethe Vectors of Quantum Integrable Models Based Onu(Q) ((Gl)Over-Cap(N))”, J. Phys. A-Math. Theor., 47:10 (2014), 105202  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    4. M. Vubangsi, M. Tchoffo, L. C. Fai, “Position-dependent effective MASS system in a variable potential: displacement operator method”, Phys. Scr., 89:2 (2014), 025101  crossref  mathscinet  adsnasa  isi  elib  scopus
    5. R. I. Nepomechie, Ch. Wang, “Boundary energy of the open XXX chain with a non-diagonal boundary term”, J. Phys. A-Math. Theor., 47:3 (2014), 032001  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    6. P. Baseilhac, T. Kojima, “Form factors of the half-infinite XXZ spin chain with a triangular boundary”, J. Stat. Mech.-Theory Exp., 2014, P09004  crossref  mathscinet  isi  elib  scopus
    7. Slavnov N.A., “Scalar Products in Gl(3)-Based Models With Trigonometric R-Matrix. Determinant Representation”, J. Stat. Mech.-Theory Exp., 2015, P03019  crossref  mathscinet  isi  elib  scopus
    8. Hao K., Cao J., Li G.-L., Yang W.-L., Shi K., Wang Yu., “A representation basis for the quantum integrable spin chain associated with the su(3) algebra”, J. High Energy Phys., 2016, no. 5, 119  crossref  mathscinet  zmath  isi  elib  scopus
    9. Kozlowski K.K. Ragoucy E., “Asymptotic behaviour of two-point functions in multi-species models”, Nucl. Phys. B, 906 (2016), 241–288  crossref  mathscinet  zmath  isi  elib  scopus
    10. A. A. Hutsalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors”, Russian Math. Surveys, 72:1 (2017), 33–99  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. Jan Fuksa, “Bethe Vectors for Composite Models with $\mathfrak{gl}(2|1)$ and $\mathfrak{gl}(1|2)$ Supersymmetry”, SIGMA, 13 (2017), 015, 17 pp.  mathnet  crossref
    12. N. Gromov, F. Levkovich-Maslyuk, G. Sizov, “New construction of eigenstates and separation of variables for $\mathrm{SU}(N)$ quantum spin chains”, J. High Energy Phys., 2017, no. 9, 111  crossref  mathscinet  zmath  isi  scopus
    13. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$”, SciPost Phys., 4:1 (2018), 006  crossref  isi
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:236
    Full text:24

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021