|
SIGMA, 2006, том 2, 063, 10 стр.
(Mi sigma91)
|
|
|
|
Эта публикация цитируется в 17 научных статьях (всего в 17 статьях)
The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with
Variable-Coefficients
Tadashi Kobayashia, Kouichi Todab a High-Functional Design G, LSI IP Development Div., ROHM CO., LTD., 21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
b Department of Mathematical Physics, Toyama Prefectural University, Kurokawa 5180, Imizu, Toyama, 939-0398, Japan
Аннотация:
The general KdV equation (gKdV) derived by T. Chou is one of the famous $(1+1)$ dimensional soliton equations with variable coefficients. It is well-known that the gKdV equation is integrable. In this paper a higher-dimensional gKdV equation, which is integrable in the sense of the Painlevé test, is presented. A transformation that links this equation to the canonical form of the Calogero–Bogoyavlenskii–Schiff equation is found. Furthermore, the form and similar transformation for the higher-dimensional modified gKdV equation are also obtained.
Ключевые слова:
KdV equation with variable-coefficients; Painlevé test; higher-dimensional integrable systems
DOI:
https://doi.org/10.3842/SIGMA.2006.063
Полный текст:
PDF файл (867 kB)
Полный текст:
http://emis.mi.ras.ru/.../Paper063
Список литературы:
PDF файл
HTML файл
Реферативные базы данных:
ArXiv:
nlin.SI/0606071
Тип публикации:
Статья
MSC: 37K10; 35Q53 Поступила: 30 ноября 2005 г.; в окончательном варианте 17 июня 2006 г.; опубликована 30 июня 2006 г.
Язык публикации: английский
Образец цитирования:
Tadashi Kobayashi, Kouichi Toda, “The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with
Variable-Coefficients”, SIGMA, 2 (2006), 063, 10 pp.
Цитирование в формате AMSBIB
\RBibitem{KobTod06}
\by Tadashi Kobayashi, Kouichi Toda
\paper The Painlev\'e Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with
Variable-Coefficients
\jour SIGMA
\yr 2006
\vol 2
\papernumber 063
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma91}
\crossref{https://doi.org/10.3842/SIGMA.2006.063}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2240736}
\zmath{https://zbmath.org/?q=an:1134.37358}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000207065100062}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234806}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/sigma91 http://mi.mathnet.ru/rus/sigma/v2/p63
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
Di Sarno L., Pugliese F., “Numerical Evaluation of the Seismic Performance of Existing Reinforced Concrete Buildings With Corroded Smooth Rebars”, Bull. Earthq. Eng.
-
Wazwaz, AM, “Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations”, Applied Mathematics and Computation, 203:2 (2008), 592
-
Wazwaz, AM, “New solutions of distinct physical structures to high-dimensional nonlinear evolution equations”, Applied Mathematics and Computation, 196:1 (2008), 363
-
Zhang Yu., Tam H., “(1+1)-dimensional m-cKdV, g-cKdV integrable systems, and (2+1)-dimensional m-cKdV hierarchy”, Canadian Journal of Physics, 86:12 (2008), 1367–1380
-
Zhang Yu., Tam H., Mei J., “Integrable Hamiltonian hierarchies associated with the equation of heat conduction”, Modern Phys. Lett. B, 24:14 (2010), 1573–1594
-
Wazwaz A.-M., “The (2+1) and (3+1)-Dimensional CBS Equations: Multiple Soliton Solutions and Multiple Singular Soliton Solutions”, Zeitschrift fur Naturforschung Section A-A Journal of Physical Sciences, 65:3 (2010), 173–181
-
Wazwaz A.-M., “Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation”, Commun Nonlinear Sci Numer Simul, 17:2 (2012), 491–495
-
Bansal A., Gupta R.K., “Lie Point Symmetries and Similarity Solutions of the Time-Dependent Coefficients Calogero-Degasperis Equation”, Phys. Scr., 86:3 (2012), 035005
-
Abourabia A.M., Hassan K.M., Selima E.S., “Painlevé Test and Some Exact Solutions for (2+1)-Dimensional Modified Korteweg-de Vries-Burgers Equation”, Int. J. Comput. Methods, 10:3 (2013), 1250058
-
Bhrawy A.H., Abdelkawy M.A., Biswas A., “Topological Solitons and Cnoidal Waves to a Few Nonlinear Wave Equations in Theoretical Physics”, Indian J. Phys., 87:11 (2013), 1125–1131
-
Moatimid G.M., El-Shiekh R.M., Al-Nowehy Abdul-Ghani A. A. H., “Exact Solutions for Calogero-Bogoyavlenskii-Schiff Equation Using Symmetry Method”, Appl. Math. Comput., 220 (2013), 455–462
-
Kumar R., Gupta R.K., Bhatia S.S., “Painlevé Analysis and Some Solutions of Variable Coefficient Benny Equation”, Pramana-J. Phys., 85:6 (2015), 1111–1122
-
Shakeel M., Mohyud-Din S.T., “Improved (G `/G)-Expansion and Extended Tanh Methods For (2 + 1)-Dimensional Calogero-Bogoyavlenskii-Schiff Equation”, Alex. Eng. J., 54:1 (2015), 27–33
-
Li Sh., Li Y., Zhang B.-g., “Some singular solutions and their limit forms for generalized Calogero?Bogoyavlenskii?Schiff equation”, Nonlinear Dyn., 85:3 (2016), 1665–1677
-
Jadaun V., Kumar S., “Lie Symmetry Analysis and Invariant Solutions of -Dimensional Calogero-Bogoyavlenskii-Schiff Equation”, Nonlinear Dyn., 93:2 (2018), 349–360
-
Harun-Or-Roshid, Khan M.H., Wazwaz A.-M., “Lump, Multi-Lump, Cross Kinky-Lump and Manifold Periodic-Soliton Solutions For the (2+1)-D Calogero-Bogoyavlenskii-Schiff Equation”, Heliyon, 6:4 (2020), e03701
-
Aminakbari N., Gu Y., Yuan W., “Meromorphic Exact Solutions of the (2+1)-Dimensional Generalized Calogero-Bogoyavlenskii-Schiff Equation”, Open Math., 18 (2020), 1342–1351
|
Просмотров: |
Эта страница: | 257 | Полный текст: | 46 | Литература: | 26 |
|