RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2014, Volume 10, 073, 20 pages (Mi sigma938)  

This article is cited in 8 scientific papers (total in 8 papers)

Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology

Yuri I. Manina, Matilde Marcollib

a Max-Planck-Institut für Mathematik, Bonn, Germany
b California Institute of Technology, Pasadena, USA

Abstract: We introduce some algebraic geometric models in cosmology related to the “boundaries” of space-time: Big Bang, Mixmaster Universe, Penrose's crossovers between aeons. We suggest to model the kinematics of Big Bang using the algebraic geometric (or analytic) blow up of a point $x$. This creates a boundary which consists of the projective space of tangent directions to $x$ and possibly of the light cone of $x$. We argue that time on the boundary undergoes the Wick rotation and becomes purely imaginary. The Mixmaster (Bianchi IX) model of the early history of the universe is neatly explained in this picture by postulating that the reverse Wick rotation follows a hyperbolic geodesic connecting imaginary time axis to the real one. Penrose's idea to see the Big Bang as a sign of crossover from “the end of previous aeon” of the expanding and cooling Universe to the “beginning of the next aeon” is interpreted as an identification of a natural boundary of Minkowski space at infinity with the Big Bang boundary.

Keywords: Big Bang cosmology; algebro-geometric blow-ups; cyclic cosmology; Mixmaster cosmologies; modular curves.

DOI: https://doi.org/10.3842/SIGMA.2014.073

Full text: PDF file (463 kB)
Full text: http://www.emis.de/journals/SIGMA/2014/073/
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1402.2158
MSC: 85A40; 14N05; 14G35
Received: March 1, 2014; in final form June 27, 2014; Published online July 9, 2014
Language:

Citation: Yuri I. Manin, Matilde Marcolli, “Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology”, SIGMA, 10 (2014), 073, 20 pp.

Citation in format AMSBIB
\Bibitem{ManMar14}
\by Yuri~I.~Manin, Matilde~Marcolli
\paper Big Bang, Blowup, and Modular Curves: Algebraic Geometry in~Cosmology
\jour SIGMA
\yr 2014
\vol 10
\papernumber 073
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma938}
\crossref{https://doi.org/10.3842/SIGMA.2014.073}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000339447300001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904180237}


Linking options:
  • http://mi.mathnet.ru/eng/sigma938
  • http://mi.mathnet.ru/eng/sigma/v10/p73

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Chanda S., Guha P., Roychowdhury R., “Bianchi-IX, Darboux–Halphen and Chazy–Ramanujan”, Int. J. Geom. Methods Mod. Phys., 13:4 (2016), 1650042  crossref  mathscinet  zmath  isi  elib  scopus
    2. Manin, Y.; Marcolli, M., “Symbolic Dynamics, Modular Curves, and Bianchi IX Cosmologies”, Annales de la faculte des sciences de Toulouse Ser. 6, 25:2-3 (2016), 517-542  crossref  mathscinet  zmath
    3. Manin, Y. I., “Painlevé VI equations in p-adic time”, P-Adic Numbers, Ultrametric Analysis, and Applications, 8:3 (2016), 217-224  crossref  mathscinet  zmath
    4. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, E. I. Zelenov, “P-adic mathematical physics: the first 30 years”, P-Adic Numbers Ultrametric Anal. Appl., 9:2 (2017), 87–121  crossref  mathscinet  zmath  isi  scopus
    5. M. Marcolli, “Spectral action gravity and cosmological models”, C. R. Phys., 18:3-4 (2017), 226–234  crossref  isi  scopus
    6. P. Gallardo, N. Giansiracusa, “Modular interpretation of a non-reductive Chow quotient”, Proc. Edinb. Math. Soc., 61:2 (2018), 457–477  crossref  mathscinet  isi
    7. W. Fan, F. Fathizadeh, M. Marcolli, “Motives and periods in Bianchi IX gravity models”, Lett. Math. Phys., 108:12 (2018), 2729–2747  crossref  mathscinet  isi  scopus
    8. Fan W., Fathizadeh F., Marcolli M., “Modular Forms in the Spectral Action of Bianchi Ix Gravitational Instantons”, J. High Energy Phys., 2019, no. 1, 234  crossref  mathscinet  zmath  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:140
    Full text:67
    References:35

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019