RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2014, Volume 10, 105, 22 pages (Mi sigma970)  

This article is cited in 1 scientific paper (total in 1 paper)

Everywhere Equivalent 3-Braids

Alexander Stoimenow

Gwangju Institute of Science and Technology, School of General Studies, GIST College, 123 Cheomdan-gwagiro, Gwangju 500-712, Korea

Abstract: A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid.

Keywords: 3-braid group; Jones polynomial; Kauffman bracket; Burau representation; adequate diagram.

DOI: https://doi.org/10.3842/SIGMA.2014.105

Full text: PDF file (434 kB)
Full text: http://www.emis.de/journals/SIGMA/2014/105/
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1411.4223
MSC: 57M25; 20F36; 20E45; 20C08
Received: July 8, 2014; in final form November 4, 2014; Published online November 16, 2014
Language:

Citation: Alexander Stoimenow, “Everywhere Equivalent 3-Braids”, SIGMA, 10 (2014), 105, 22 pp.

Citation in format AMSBIB
\Bibitem{Sto14}
\by Alexander~Stoimenow
\paper Everywhere Equivalent 3-Braids
\jour SIGMA
\yr 2014
\vol 10
\papernumber 105
\totalpages 22
\mathnet{http://mi.mathnet.ru/sigma970}
\crossref{https://doi.org/10.3842/SIGMA.2014.105}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000348066900001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924871343}


Linking options:
  • http://mi.mathnet.ru/eng/sigma970
  • http://mi.mathnet.ru/eng/sigma/v10/p105

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Stoimenow A., “Everywhere Equivalent 2-Component Links”, Symmetry-Basel, 7:2 (2015), 365–375  crossref  mathscinet  zmath  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:69
    Full text:14
    References:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019