RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Zh. Ind. Mat., 2020, Volume 23, Number 1, Pages 28–45 (Mi sjim1075)  

The problem of determining the two-dimensional kernel of a viscoelasticity equation

Z. R. Bozorov

Bukhara State University, ul. M. Ikbola 11, Bukhara 200100, Uzbekistan

Abstract: Under consideration is the integro-differential equation of viscoelasticity. The direct problem is to determine the $z$-component of the displacement vector from the initial boundary value problem for the equation. We assume that the kernel of the integral term of the equation depends on time and a spatial variable $x$. For determination of the kernel the additional condition is posed on the solution of the direct problem for $y=0$. The inverse problem is replaced by an equivalent system of integro-differential equations for the unknown functions. To this system, we apply the method of scales of Banach spaces of analytic functions. The local unique solvability of the inverse problem is proved in the class of functions analytic in $x$ and continuous in $t$.

Keywords: integro-differential equation, inverse problem, uniqueness, analytic function, viscoelasticity.

DOI: https://doi.org/10.33048/SIBJIM.2020.23.104

Full text: PDF file (567 kB)
First page: PDF file
References: PDF file   HTML file

UDC: 517.958
Received: 14.08.2019
Revised: 05.09.2019
Accepted:05.09.2019

Citation: Z. R. Bozorov, “The problem of determining the two-dimensional kernel of a viscoelasticity equation”, Sib. Zh. Ind. Mat., 23:1 (2020), 28–45

Citation in format AMSBIB
\Bibitem{Boz20}
\by Z.~R.~Bozorov
\paper The problem of determining the two-dimensional kernel of a viscoelasticity equation
\jour Sib. Zh. Ind. Mat.
\yr 2020
\vol 23
\issue 1
\pages 28--45
\mathnet{http://mi.mathnet.ru/sjim1075}
\crossref{https://doi.org/10.33048/SIBJIM.2020.23.104}


Linking options:
  • http://mi.mathnet.ru/eng/sjim1075
  • http://mi.mathnet.ru/eng/sjim/v23/i1/p28

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Сибирский журнал индустриальной математики
    Number of views:
    This page:12
    References:4
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020