RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Zh. Ind. Mat., 2005, Volume 8, Number 1, Pages 53–63 (Mi sjim318)  

This article is cited in 5 scientific papers (total in 5 papers)

On the theory of realization of strong differential models. I

A. V. Daneev, A. V. Lakeev, V. A. Rusanov, M. V. Rusanov

Institute of System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences

Abstract: The topological-algebraic characteristics of ordinary and distributed linear differential extensions are studied, and a qualitative analysis is carried out of the existence of strong differential $(A,B)$-models realized over the sets of observed dynamical processes (by families of the pairs trajectory-control) that admit an a posteriori extension.

Full text: PDF file (281 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2007, 1:3, 273–282

Bibliographic databases:

UDC: 517.926
Received: 17.11.2003
Revised: 29.10.2004

Citation: A. V. Daneev, A. V. Lakeev, V. A. Rusanov, M. V. Rusanov, “On the theory of realization of strong differential models. I”, Sib. Zh. Ind. Mat., 8:1 (2005), 53–63; J. Appl. Industr. Math., 1:3 (2007), 273–282

Citation in format AMSBIB
\Bibitem{DanLakRus05}
\by A.~V.~Daneev, A.~V.~Lakeev, V.~A.~Rusanov, M.~V.~Rusanov
\paper On the theory of realization of strong differential models.~I
\jour Sib. Zh. Ind. Mat.
\yr 2005
\vol 8
\issue 1
\pages 53--63
\mathnet{http://mi.mathnet.ru/sjim318}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2220136}
\transl
\jour J. Appl. Industr. Math.
\yr 2007
\vol 1
\issue 3
\pages 273--282
\crossref{https://doi.org/10.1134/S1990478907030039}


Linking options:
  • http://mi.mathnet.ru/eng/sjim318
  • http://mi.mathnet.ru/eng/sjim/v8/i1/p53

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. A. V. Daneev, V. A. Rusanov, D. Yu. Sharpinskii, “The entropy maximum principle in the structural identification of dynamical systems: an analytic approach”, Russian Math. (Iz. VUZ), 49:11 (2005), 14–22  mathnet  mathscinet
    2. A. V. Daneev, A. V. Lakeev, V. A. Rusanov, “On the theory of realization of strong differential models. II”, J. Appl. Industr. Math., 1:3 (2007), 283–292  mathnet  crossref  mathscinet
    3. Daneev A.V., Kozyrev V.A., Kumenko A.E., Rusanov V.A., “O strukturno-parametricheskoi identifikatsii statsionarnykh mnogomernykh sistem”, Izv. Samarskogo nauchnogo tsentra RAN, 11:3 (2009), 122–130
    4. A. V. Lakeev, Yu. E. Linke, V. A. Rusanov, “O razreshimosti zadachi realizatsii operator-funktsii nelineinogo regulyatora dinamicheskoi sistemy vtorogo poryadka”, Sib. zhurn. industr. matem., 18:4 (2015), 61–74  mathnet  crossref  mathscinet  elib
    5. Rusanov V.A., Daneev A.V., Linke Yu.E., “To the Geometrical Theory of Differential Realization of Dynamic Processes in a Hilbert Space”, Cybern. Syst. Anal., 53:4 (2017), 554–564  crossref  mathscinet  zmath  isi  scopus
  • Сибирский журнал индустриальной математики
    Number of views:
    This page:341
    Full text:88
    References:38

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020