RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Zh. Ind. Mat., 2010, Volume 13, Number 2, Pages 124–134 (Mi sjim615)  

This article is cited in 1 scientific paper (total in 1 paper)

A general form of the solution to the flow problem on the torus

E. V. Semenko

Novosibirsk State Pedagogical University, Novosibirsk

Abstract: We develop the idea to use Riemann surfaces for modeling plane flows. We establish a collection of parameters which uniquely determine the solution to the flow problem on the torus and construct a homeomorphism of the flow region, in whose plane the solution is represented explicitly by irrational functions of a complex variable with coefficients depending on the parameters. Basing on that we analyze the flow schemes for some values of the parameters.

Keywords: flow scheme, Riemann surface, torus, flow parameters.

Full text: PDF file (270 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 517.95
Received: 26.06.2009

Citation: E. V. Semenko, “A general form of the solution to the flow problem on the torus”, Sib. Zh. Ind. Mat., 13:2 (2010), 124–134

Citation in format AMSBIB
\Bibitem{Sem10}
\by E.~V.~Semenko
\paper A~general form of the solution to the flow problem on the torus
\jour Sib. Zh. Ind. Mat.
\yr 2010
\vol 13
\issue 2
\pages 124--134
\mathnet{http://mi.mathnet.ru/sjim615}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2839605}


Linking options:
  • http://mi.mathnet.ru/eng/sjim615
  • http://mi.mathnet.ru/eng/sjim/v13/i2/p124

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. V. Semenko, “Inverse problem of hydrodynamics for doubly connected domain”, Russian Math. (Iz. VUZ), 60:5 (2016), 35–50  mathnet  crossref  isi
  • Сибирский журнал индустриальной математики
    Number of views:
    This page:223
    Full text:126
    References:109
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019