RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Zh. Ind. Mat., 2014, Volume 17, Number 2, Pages 32–40 (Mi sjim830)  

This article is cited in 1 scientific paper (total in 1 paper)

Reconstruction of the convolution operator from the right-hand side on the real half-axis

A. F. Voronin

Sobolev Institute of Mathematics SB RAS, 4 Koptyug av., 630090 Novosibirsk

Abstract: We study a Volterra integral equation of the first kind in convolutions on a semi-infinite interval. Under rather natural constraints on the kernel and the right-hand side of a Volterra integral equation (the kernel has bounded support and the support of the right-hand side may be unbounded), it is possible to reconstruct the integral operator of the equation (the solution and the kernel of the integral operator) from the right-hand side of the equation. Some uniqueness theorem is proved, as well as necessary and sufficient conditions for solvability and the explicit formulas for the solution and the kernel are obtained.

Keywords: Volterra integral equation of the first kind, convolution, uniqueness, reconstruction formula for the convolution operator.

Full text: PDF file (224 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2014, 8:3, 428–435

Bibliographic databases:

UDC: 517.968.22
Received: 24.03.2014

Citation: A. F. Voronin, “Reconstruction of the convolution operator from the right-hand side on the real half-axis”, Sib. Zh. Ind. Mat., 17:2 (2014), 32–40; J. Appl. Industr. Math., 8:3 (2014), 428–435

Citation in format AMSBIB
\Bibitem{Vor14}
\by A.~F.~Voronin
\paper Reconstruction of the convolution operator from the right-hand side on the real half-axis
\jour Sib. Zh. Ind. Mat.
\yr 2014
\vol 17
\issue 2
\pages 32--40
\mathnet{http://mi.mathnet.ru/sjim830}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3379237}
\transl
\jour J. Appl. Industr. Math.
\yr 2014
\vol 8
\issue 3
\pages 428--435
\crossref{https://doi.org/10.1134/S1990478914030168}


Linking options:
  • http://mi.mathnet.ru/eng/sjim830
  • http://mi.mathnet.ru/eng/sjim/v17/i2/p32

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Voronin A.F., “Reconstruction of a Convolution Operator From the Right-Hand Side on the Semiaxis”, J. Inverse Ill-Posed Probl., 23:5 (2015), 543–550  crossref  isi
  • Сибирский журнал индустриальной математики
    Number of views:
    This page:203
    Full text:56
    References:30
    First page:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019