RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Zh. Ind. Mat., 2015, Volume 18, Number 2, Pages 74–84 (Mi sjim884)  

This article is cited in 3 scientific papers (total in 3 papers)

An equilibrium problem for an elastic plate with an inclined crack on the boundary of a rigid inclusion

N. V. Neustroeva

North-Eastern Federal University (NEFU), Institute of Mathematics and Informatics, 48 Kulakovskogo st., 677000 Yakutsk

Abstract: We consider an equilibrium problem for a Kirchhoff–Love elastic plate with an inclined crack on the boundary of a rigid inclusion. The nonpenetration conditions are considered at the crack faces in the form of equalities and inequalities. On the boundary of the rigid inclusion, some identity holds describing the action of the external forces on the rigid part of the plate. The variational statement of the problem is studied, and an equivalent boundary value problem is formulated. For a family of problems about a plate with inclined crack on the boundary, we analyze the passage to the limit as the rigidity parameter of the inclusion tends to infinity.

Keywords: inclined crack, rigid inclusion, plate, variational inequality.

DOI: https://doi.org/10.17377/sibjim.2015.18.208

Full text: PDF file (665 kB)
References: PDF file   HTML file

English version:
Journal of Applied and Industrial Mathematics, 2015, 9:3, 402–411

Bibliographic databases:

UDC: 517.95
Received: 25.12.2014

Citation: N. V. Neustroeva, “An equilibrium problem for an elastic plate with an inclined crack on the boundary of a rigid inclusion”, Sib. Zh. Ind. Mat., 18:2 (2015), 74–84; J. Appl. Industr. Math., 9:3 (2015), 402–411

Citation in format AMSBIB
\Bibitem{Neu15}
\by N.~V.~Neustroeva
\paper An equilibrium problem for an elastic plate with an inclined crack on the boundary of a~rigid inclusion
\jour Sib. Zh. Ind. Mat.
\yr 2015
\vol 18
\issue 2
\pages 74--84
\mathnet{http://mi.mathnet.ru/sjim884}
\crossref{https://doi.org/10.17377/sibjim.2015.18.208}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3549830}
\elib{https://elibrary.ru/item.asp?id=23598679}
\transl
\jour J. Appl. Industr. Math.
\yr 2015
\vol 9
\issue 3
\pages 402--411
\crossref{https://doi.org/10.1134/S1990478915030114}


Linking options:
  • http://mi.mathnet.ru/eng/sjim884
  • http://mi.mathnet.ru/eng/sjim/v18/i2/p74

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. P. Lazarev, “Optimalnoe upravlenie razmerom zhestkogo vklyucheniya v zadache o ravnovesii neodnorodnogo trekhmernogo tela s treschinoi”, Matematicheskie zametki SVFU, 23:2 (2016), 51–64  mathnet  elib
    2. N. P. Lazarev, V. V. Everstov, “Optimalnyi razmer vneshnego tonkogo zhestkogo vklyucheniya v nelineinoi zadache o ravnovesii tsilindricheskogo tela s treschinoi”, Matematicheskie zametki SVFU, 24:4 (2017), 37–51  mathnet  crossref  elib
    3. N. P. Lazarev, I. Khiromiti, P. V. Sivtsev, I. M. Tikhonova, “O regulyarnosti resheniya v zadache o ravnovesii plastiny Timoshenko, soderzhaschei naklonnuyu treschinu”, Matematicheskie zametki SVFU, 25:1 (2018), 38–49  mathnet  crossref  elib
  • Сибирский журнал индустриальной математики
    Number of views:
    This page:215
    Full text:65
    References:36
    First page:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020