RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Zh. Vychisl. Mat., 2004, Volume 7, Number 3, Pages 261–275 (Mi sjvm162)  

Multiresolution analysis in the space $\ell^2(\mathbb Z)$ using discrete splines

A. B. Pevnyi

Syktyvkar State University, Faculty of Mathematics

Abstract: A non-stationary multiresolution analysis $\{V_k\}_{k\geq 0}$ $\ell^2(\mathbb Z)$ in the space $\ell^2(\mathbb Z)$ is performed, the subspaces $V_k$ consisting of discrete splines. In each $V_k$, there is a function $\varphi_k$ such that the system $\{\varphi_k(\cdot-l2^k):l\in\mathbb Z\}$ forms the Riesz base of $V_k$. A system of wavelets $\psi_{kl}(j)=\psi_k(j-l2^k)$, $l\in\mathbb Z$, $k=1,2…$ is not generated by shifts and dilations of the unique function. The subspaces $W_k=\operatorname{span}\{\psi_{kl}:l\in\mathbb Z\}$ form an orthogonal expansion of the space: $\ell^2(\mathbb Z)=\oplus^{\infty}_{k=1}W_k$.
The space $V_k$ is the same as the space of discrete splines $S_{p,2^k}$ of order $p$ with a distance between the knots $2^k$. For every $p$, a multiresolution analysis is obtained (for $p=1$ – the Haar multiresolution analysis).

Key words: discrete splines, discrete wavelets, multiresolution analysis.

Full text: PDF file (759 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 519.65
Received: 31.01.2003

Citation: A. B. Pevnyi, “Multiresolution analysis in the space $\ell^2(\mathbb Z)$ using discrete splines”, Sib. Zh. Vychisl. Mat., 7:3 (2004), 261–275

Citation in format AMSBIB
\Bibitem{Pev04}
\by A.~B.~Pevnyi
\paper Multiresolution analysis in the space $\ell^2(\mathbb Z)$ using discrete splines
\jour Sib. Zh. Vychisl. Mat.
\yr 2004
\vol 7
\issue 3
\pages 261--275
\mathnet{http://mi.mathnet.ru/sjvm162}
\zmath{https://zbmath.org/?q=an:1068.65152}


Linking options:
  • http://mi.mathnet.ru/eng/sjvm162
  • http://mi.mathnet.ru/eng/sjvm/v7/i3/p261

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Sibirskii Zhurnal Vychislitel'noi Matematiki
    Number of views:
    This page:227
    Full text:72
    References:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019