Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Zh. Vychisl. Mat., 2005, Volume 8, Number 1, Pages 31–42 (Mi sjvm208)  

This article is cited in 3 scientific papers (total in 3 papers)

On the $p$-version of the finite element method for the boundary value problem with singularity

E. V. Kashuba, V. A. Rukavishnikov

Computer Centre Far-Eastern Branch of RAS

Abstract: The one-dimensional first-type boundary value problem for the second order differential equation with strong singularity of a solution caused by coordinated degeneration of input data at the origin is considered. For this problem we define the solution as $R_{\nu}$-generalized one. It has been proved that solution belongs to the weighted Sobolev space $H^3_{2,\nu+\beta/2+1}$ under proper assumptions for coefficients and the right-hand side of the differential equation. The scheme of the finite element method is constructed on a fixed mesh using polynomials of an arbitrary degree $p$ (the $p$-version of the finite element method). The finite element space contains singular polynomials. Using the regularity of $R_{\nu}$-generalized solution, the estimate for the rate of convergence of the second order with respect to the degree $p$ of polynomials is proved in the norm of the weighted Sobolev space.

Key words: the $p$-version of the finite element method, boundary value problems with singularity, the weighted Sobolev spaces, an orthonormalized singular polynomials set.

Full text: PDF file (208 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 519.6
Received: 03.11.2003
Revised: 31.05.2004
Language:

Citation: E. V. Kashuba, V. A. Rukavishnikov, “On the $p$-version of the finite element method for the boundary value problem with singularity”, Sib. Zh. Vychisl. Mat., 8:1 (2005), 31–42

Citation in format AMSBIB
\Bibitem{KasRuk05}
\by E.~V.~Kashuba, V.~A.~Rukavishnikov
\paper On the $p$-version of the finite element method for the boundary value problem with singularity
\jour Sib. Zh. Vychisl. Mat.
\yr 2005
\vol 8
\issue 1
\pages 31--42
\mathnet{http://mi.mathnet.ru/sjvm208}
\zmath{https://zbmath.org/?q=an:1078.65104}


Linking options:
  • http://mi.mathnet.ru/eng/sjvm208
  • http://mi.mathnet.ru/eng/sjvm/v8/i1/p31

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Rukavishnikov V.A., Kuznetsova E.V., “Coercive estimate for a boundary value problem with noncoordinated degeneration of the data”, Differ. Equ., 43:4 (2007), 550–560  crossref  mathscinet  zmath  isi  isi  elib  elib  scopus
    2. V. A. Rukavishnikov, E. V. Kuznetsova, “A scheme of a finite element method for boundary value problems with non-coordinated degeneration of input data”, Num. Anal. Appl., 2:3 (2009), 250–259  mathnet  crossref
    3. Rukavishnikov V.A., “Methods of numerical analysis for boundary value problems with strong singularity”, Russian J. Numer. Anal. Math. Modelling, 24:6 (2009), 565–590  crossref  mathscinet  zmath  isi  elib  scopus
  • Sibirskii Zhurnal Vychislitel'noi Matematiki
    Number of views:
    This page:202
    Full text:70
    References:36

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021