|
This article is cited in 8 scientific papers (total in 8 papers)
A scheme of a finite element method for boundary value problems with non-coordinated degeneration of input data
V. A. Rukavishnikova, E. V. Kuznetsovab a Computer Centre Far-Eastern Branch of RAS
b Far Eastern State Transport University
Abstract:
We construct a scheme of a finite element method for boundary value problems with non-coordinated
degeneration of input data and singularity of solution. The rate of convergence of an approximate solution of
the proposed finite element method to the exact $R_{\nu}$-generalized solution in the weight set $W^1_{2,\nu^*+\beta/2+1}(\Omega,\delta)$ is investigated, the estimation of finite element approximations is established.
Key words:
non-coordinated degeneration of input data, $R_{\nu}$-generalized solution, singularity of a solution, finite element method.
Full text:
PDF file (244 kB)
References:
PDF file
HTML file
English version:
Numerical Analysis and Applications, 2009, 2:3, 250–259
UDC:
519.632 Received: 14.11.2007 Revised: 21.07.2008
Citation:
V. A. Rukavishnikov, E. V. Kuznetsova, “A scheme of a finite element method for boundary value problems with non-coordinated degeneration of input data”, Sib. Zh. Vychisl. Mat., 12:3 (2009), 313–324; Num. Anal. Appl., 2:3 (2009), 250–259
Citation in format AMSBIB
\Bibitem{RukKuz09}
\by V.~A.~Rukavishnikov, E.~V.~Kuznetsova
\paper A~scheme of a~finite element method for boundary value problems with non-coordinated degeneration of input data
\jour Sib. Zh. Vychisl. Mat.
\yr 2009
\vol 12
\issue 3
\pages 313--324
\mathnet{http://mi.mathnet.ru/sjvm25}
\transl
\jour Num. Anal. Appl.
\yr 2009
\vol 2
\issue 3
\pages 250--259
\crossref{https://doi.org/10.1134/S1995423909030069}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71449085036}
Linking options:
http://mi.mathnet.ru/eng/sjvm25 http://mi.mathnet.ru/eng/sjvm/v12/i3/p313
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Rukavishnikov V.A., “Methods of numerical analysis for boundary value problems with strong singularity”, Russian J. Numer. Anal. Math. Modelling, 24:6 (2009), 565–590
-
Rukavishnikov V.A., Rukavishnikova H.I., “On the Error Estimation of the Finite Element Method for the Boundary Value Problems with Singularity in the Lebesgue Weighted Space”, Numer. Funct. Anal. Optim., 34:12 (2013), 1328–1347
-
Rukavishnikov V.A., Rukavishnikova E.I., “the Finite Difference Method For Boundary Value Problem With Singularity”, Finite Difference Methods, Theory and Applications, Lecture Notes in Computer Science, 9045, eds. Dimov I., Farago I., Vulkov L., Springer-Verlag Berlin, 2015, 72–83
-
V. A. Rukavishnikov, A. V. Rukavishnikov, “New approximate method for solving the Stokes problem in a domain with corner singularity”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 11:1 (2018), 95–108
-
V. A. Rukavishnikov, A. O. Mosolapov, “Vesovoi vektornyi metod konechnykh elementov i ego prilozheniya”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 71–86
-
E. I. Rukavishnikova, “Skhodimost metoda konechnykh elementov dlya kraevoi zadachi s vyrozhdeniem na vsei granitse oblasti”, Vestn. YuUrGU. Ser. Vych. matem. inform., 8:3 (2019), 5–26
-
Rukavishnikov V.A., Rukavishnikova E.I., “Existence and Uniqueness of An R-Nu-Generalized Solution of the Dirichlet Problem For the Lame System With a Corner Singularity”, Differ. Equ., 55:6 (2019), 832–840
-
Rukavishnikov V.A., Rukavishnikova I E., “Comparative Analysis of the Finite Element Methods For the Elasticity Problem With Singularity”, AIP Conference Proceedings, 2116, eds. Simos T., Tsitouras C., Amer Inst Physics, 2019, 450042
|
Number of views: |
This page: | 425 | Full text: | 91 | References: | 25 | First page: | 6 |
|