RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Zh. Vychisl. Mat., 2010, Volume 13, Number 1, Pages 15–21 (Mi sjvm264)  

This article is cited in 2 scientific papers (total in 2 papers)

On nonlinear algebraic differential systems reducible to non-degenerate systems of ordinary differential equations. Theory and numerical methods of solution

Yu. E. Boyarintsev

Institute of System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences

Abstract: In this paper, we consider algebraic differential systems of the form
$$ \frac{dAx}{dt}=Bx+f(x,t) $$
with a regular pair of matrices $(A,В)$. The conditions of reducibility of such systems to non-degenerate systems of ordinary differential equations (ODE) of first order with respect to the derivative $x'(t)$ are given. Methods for the numerical solution of $x(t)$ are proposed.

Key words: algebraic differential, nonlinear, numerical method of solution.

Full text: PDF file (161 kB)
References: PDF file   HTML file

English version:
Numerical Analysis and Applications, 2010, 3:1, 11–16

UDC: 517.518
Received: 09.06.2008
Revised: 17.02.2009

Citation: Yu. E. Boyarintsev, “On nonlinear algebraic differential systems reducible to non-degenerate systems of ordinary differential equations. Theory and numerical methods of solution”, Sib. Zh. Vychisl. Mat., 13:1 (2010), 15–21; Num. Anal. Appl., 3:1 (2010), 11–16

Citation in format AMSBIB
\Bibitem{Boy10}
\by Yu.~E.~Boyarintsev
\paper On nonlinear algebraic differential systems reducible to non-degenerate systems of ordinary differential equations. Theory and numerical methods of solution
\jour Sib. Zh. Vychisl. Mat.
\yr 2010
\vol 13
\issue 1
\pages 15--21
\mathnet{http://mi.mathnet.ru/sjvm264}
\transl
\jour Num. Anal. Appl.
\yr 2010
\vol 3
\issue 1
\pages 11--16
\crossref{https://doi.org/10.1134/S1995423910010027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952161359}


Linking options:
  • http://mi.mathnet.ru/eng/sjvm264
  • http://mi.mathnet.ru/eng/sjvm/v13/i1/p15

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Boyarintseva T.P., “Realizatsiya metoda resheniya uravnenii s pomoschyu teorii ADV srede VBA”, Vestn. Irkutskogo gos. tekhnich. un-ta, 45:5 (2010), 8–11  elib
    2. Bandurin N.G., “Programma dlya avtomaticheskogo resheniya sistem suschestvenno nelineinykh differentsialno-algebraicheskikh uravnenii (dvumernye zadachi)”, Izvestiya volgogradskogo gosudarstvennogo tekhnicheskogo universiteta, 10:14 (2012), 10–13  elib
  • Sibirskii Zhurnal Vychislitel'noi Matematiki
    Number of views:
    This page:341
    Full text:96
    References:43
    First page:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021