RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Zh. Vychisl. Mat., 1998, Volume 1, Number 3, Pages 281–297 (Mi sjvm309)  

This article is cited in 2 scientific papers (total in 2 papers)

Grid approximations of singularly perturbed systems for parabolic convection-diffusion equations with counterflow

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: The first boundary value problem is considered on a strip for a system of two singularly perturbed parabolic equations. The perturbation parameters multiplying the highest derivatives of each of the equations are mutually independent and can take arbitrary values from the interval $(0,1]$. When these parameters equal zero, the system of parabolic equations degenerates into a system of hyperbolic first order equations coupled by the reaction terms. The convective terms (i.e., their components orthogonal to the boundaries of the strip) that are involved in the different equations have the opposite directions (convection with counterflow). This case brings us to the appearance of boundary layers in the neighbourhood of both boundaries of the strip. For this boundary value problem, the difference schemes that converge uniformly with respect to the parameters are constructed here using the condensing mesh method. We also consider the construction of parameter uniform convergent difference schemes for a system of singularly perturbed elliptic equations that degenerate into first order equations if the parameter equals zero.

Full text: PDF file (895 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 519.632/633
Received: 10.12.1997
Language:

Citation: G. I. Shishkin, “Grid approximations of singularly perturbed systems for parabolic convection-diffusion equations with counterflow”, Sib. Zh. Vychisl. Mat., 1:3 (1998), 281–297

Citation in format AMSBIB
\Bibitem{Shi98}
\by G.~I.~Shishkin
\paper Grid approximations of singularly perturbed systems for parabolic convection-diffusion equations with counterflow
\jour Sib. Zh. Vychisl. Mat.
\yr 1998
\vol 1
\issue 3
\pages 281--297
\mathnet{http://mi.mathnet.ru/sjvm309}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1699491}
\zmath{https://zbmath.org/?q=an:0917.65079}


Linking options:
  • http://mi.mathnet.ru/eng/sjvm309
  • http://mi.mathnet.ru/eng/sjvm/v1/i3/p281

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kopteva N., O'Riordan E., “Shishkin Meshes in the Numerical Solution of Singularly Perturbed Differential Equations”, Int J Numer Anal Model, 7:3 (2010), 393–415  mathscinet  zmath  isi  elib
    2. Roos H.-G., Schopf M., “Layer Structure and the Galerkin Finite Element Method For a System of Weakly Coupled Singularly Perturbed Convection-Diffusion Equations With Multiple Scales”, ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer., 49:5 (2015), 1525–1547  crossref  mathscinet  zmath  isi  scopus
  • Sibirskii Zhurnal Vychislitel'noi Matematiki
    Number of views:
    This page:212
    Full text:82
    References:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020