RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Zh. Vychisl. Mat., 2014, Volume 17, Number 2, Pages 191–201 (Mi sjvm542)  

This article is cited in 8 scientific papers (total in 8 papers)

Numerical and physical modeling of the Lorenz system dynamics

A. N. Pchelintsev

Tambov State Technical University, 106 Sovetskaya St., Tambov, 392000, Russia

Abstract: This paper describes a modification of a power series for the construction of approximate solutions of the Lorenz system. The results of the computer-aided simulation are presented. Also, the physical modeling of the dynamics of the Lorenz system of the processes occurring in the circuit are considered.

Key words: Lorenz system, analog multiplier, integrator, method of power series, radius of convergence, free convection, Lorenz attractor.

Full text: PDF file (420 kB)
References: PDF file   HTML file

English version:
Numerical Analysis and Applications, 2014, 7:2, 159–167

Bibliographic databases:

UDC: 519.622.2
Received: 31.01.2013
Revised: 07.06.2013

Citation: A. N. Pchelintsev, “Numerical and physical modeling of the Lorenz system dynamics”, Sib. Zh. Vychisl. Mat., 17:2 (2014), 191–201; Num. Anal. Appl., 7:2 (2014), 159–167

Citation in format AMSBIB
\Bibitem{Pch14}
\by A.~N.~Pchelintsev
\paper Numerical and physical modeling of the Lorenz system dynamics
\jour Sib. Zh. Vychisl. Mat.
\yr 2014
\vol 17
\issue 2
\pages 191--201
\mathnet{http://mi.mathnet.ru/sjvm542}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3409480}
\transl
\jour Num. Anal. Appl.
\yr 2014
\vol 7
\issue 2
\pages 159--167
\crossref{https://doi.org/10.1134/S1995423914020098}


Linking options:
  • http://mi.mathnet.ru/eng/sjvm542
  • http://mi.mathnet.ru/eng/sjvm/v17/i2/p191

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. Lozi, A. N. Pchelintsev, “A new reliable numerical method for computing chaotic solutions of dynamical systems: the Chen attractor case”, Int. J. Bifurcation Chaos, 25:13 (2015), 1550187  crossref  isi
    2. R. Lozi, V. A. Pogonin, A. N. Pchelintsev, “A new accurate numerical method of approximation of chaotic solutions of dynamical model equations with quadratic nonlinearities”, Chaos Solitons Fractals, 91 (2016), 108–114  crossref  isi
    3. E. F. D. Goufo, “Chaotic processes using the two-parameter derivative with non-singular and non-local kernel: basic theory and applications”, Chaos, 26:8 (2016), 084305  crossref  isi
    4. W. Lin, X. Chen, Sh. Zhou, “Achieving control and synchronization merely through a stochastically adaptive feedback coupling”, Chaos, 27:7 (2017), 073110  crossref  mathscinet  zmath  isi
    5. J. Ma, M. Yang, X. Han, Zh. Li, “Ultra-short-term wind generation forecast based on multivariate empirical dynamic modeling”, 2017 IEEE Industry Applications Society Annual Meeting, IEEE, 2017  isi
    6. Zh. Jiao, K. Ma, Y. Rong, H. Wang, L. Zou, “Adaptive synchronisation of small-world networks with Lorenz chaotic oscillators”, Int. J. Sens. Netw., 24:2 (2017), 90–97  crossref  isi
    7. L. Bougoffa, S. Al-Awfi, S. Bougouffa, “A complete and partial integrability technique of the Lorenz system”, Results Phys., 9 (2018), 712–716  crossref  isi  scopus
    8. M. S. Khan, M. I. Khan, “A novel numerical algorithm based on Galerkin-Petrov time-discretization method for solving chaotic nonlinear dynamical systems”, Nonlinear Dyn., 91:3 (2018), 1555–1569  crossref  isi  scopus
  • Sibirskii Zhurnal Vychislitel'noi Matematiki
    Number of views:
    This page:499
    Full text:125
    References:47
    First page:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019