RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Zh. Vychisl. Mat., 2016, Volume 19, Number 4, Pages 429–439 (Mi sjvm628)  

This article is cited in 1 scientific paper (total in 1 paper)

A difference scheme for a conjugate-operator model of the heat conduction problem on non-matching grids

S. B. Sorokinab

a Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 6 Lavrentiev pr., Novosibirsk, 630090, Russia
b Novosibirsk State University, 2 Pirogova str., Novosibirsk, 630090, Russia

Abstract: On non-matching grids discrete analogue conjugate-operator models of heat conduction, keeping the structure of the original model are constructed. Numerical experiments show that the difference scheme converges with second order of accuracy for the case of discontinuous parameters of the medium in the Fourier law and non-uniform grids.

Key words: problem of heat conductivity, mathematical model, discrete analog, non-matching grid, convergence, difference scheme.

Funding Agency Grant Number
Russian Academy of Sciences - Federal Agency for Scientific Organizations 1.3
15


DOI: https://doi.org/10.15372/SJNM20160407

Full text: PDF file (415 kB)
References: PDF file   HTML file

English version:
Numerical Analysis and Applications, 2016, 9:4, 335–345

Bibliographic databases:

UDC: 519.632
Received: 28.12.2015
Revised: 22.04.2016

Citation: S. B. Sorokin, “A difference scheme for a conjugate-operator model of the heat conduction problem on non-matching grids”, Sib. Zh. Vychisl. Mat., 19:4 (2016), 429–439; Num. Anal. Appl., 9:4 (2016), 335–345

Citation in format AMSBIB
\Bibitem{Sor16}
\by S.~B.~Sorokin
\paper A difference scheme for a~conjugate-operator model of the heat conduction problem on non-matching grids
\jour Sib. Zh. Vychisl. Mat.
\yr 2016
\vol 19
\issue 4
\pages 429--439
\mathnet{http://mi.mathnet.ru/sjvm628}
\crossref{https://doi.org/10.15372/SJNM20160407}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3600779}
\elib{http://elibrary.ru/item.asp?id=27298009}
\transl
\jour Num. Anal. Appl.
\yr 2016
\vol 9
\issue 4
\pages 335--345
\crossref{https://doi.org/10.1134/S1995423916040078}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000391192300007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85002589693}


Linking options:
  • http://mi.mathnet.ru/eng/sjvm628
  • http://mi.mathnet.ru/eng/sjvm/v19/i4/p429

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. B. Sorokin, “A difference scheme for a conjugate-operator model of the heat conduction problem in the polar coordinates”, Num. Anal. Appl., 10:3 (2017), 244–258  mathnet  crossref  crossref  isi  elib
  • Sibirskii Zhurnal Vychislitel'noi Matematiki
    Number of views:
    This page:108
    Full text:13
    References:19
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020