RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Zh. Vychisl. Mat., 2007, Volume 10, Number 1, Pages 89–104 (Mi sjvm69)  

Approximation of piecewise smooth functions by a small binary basis from eigenfunctions of the two Sturm–Liouville problems under mutually symmetric boundary conditions

V. V. Smelov

Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences

Abstract: A method for construction of specific basis functions is formulated. This method is based on eigenfunctions of the two general Sturm–Liouville problems under two different mutually symmetric versions of boundary conditions. The expansion of smooth and piecewise smooth functions leads to rapidly convergent series. This result is the basis for approximation of the above-mentioned functions by means of a small number of terms.

Key words: piecewise smooth function, approximation, the Sturm-Liouville problem, eigenfunctions, rapidly convergent series.

Full text: PDF file (273 kB)
References: PDF file   HTML file
UDC: 518.12+519.34
Received: 16.11.2005
Revised: 19.01.2006

Citation: V. V. Smelov, “Approximation of piecewise smooth functions by a small binary basis from eigenfunctions of the two Sturm–Liouville problems under mutually symmetric boundary conditions”, Sib. Zh. Vychisl. Mat., 10:1 (2007), 89–104

Citation in format AMSBIB
\Bibitem{Sme07}
\by V.~V.~Smelov
\paper Approximation of piecewise smooth functions by a~small binary basis from eigenfunctions of the two Sturm--Liouville problems under mutually symmetric boundary conditions
\jour Sib. Zh. Vychisl. Mat.
\yr 2007
\vol 10
\issue 1
\pages 89--104
\mathnet{http://mi.mathnet.ru/sjvm69}


Linking options:
  • http://mi.mathnet.ru/eng/sjvm69
  • http://mi.mathnet.ru/eng/sjvm/v10/i1/p89

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Sibirskii Zhurnal Vychislitel'noi Matematiki
    Number of views:
    This page:177
    Full text:53
    References:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019