RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1996, Volume 187, Number 1, Pages 55–82 (Mi msb100)  

This article is cited in 3 scientific papers (total in 3 papers)

Right inverse for a convolution operator in space of germs of analytic functions on connected subsets of $\mathbb C$

Yu. F. Korobeinik

Rostov State University

Abstract: Several general results concerning the existence of a continuous linear right inverse (CLRI) of a continuous linear operator are established. Using these results it is possible to obtain first (in a more general situation) necessary and then sufficient conditions (and in several cases, a test) for the existence of a CLRI in spaces of analytic germs on certain classes of connected sets for the convolution operator $L_b$ whose symbol $b(z)$ is an entire function of order 1 and minimal type.

DOI: https://doi.org/10.4213/sm100

Full text: PDF file (423 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 1996, 187:1, 53–80

Bibliographic databases:

UDC: 517.9
MSC: 46E10, 47B38, 44A35
Received: 24.08.1993 and 23.12.1994

Citation: Yu. F. Korobeinik, “Right inverse for a convolution operator in space of germs of analytic functions on connected subsets of $\mathbb C$”, Mat. Sb., 187:1 (1996), 55–82; Sb. Math., 187:1 (1996), 53–80

Citation in format AMSBIB
\Bibitem{Kor96}
\by Yu.~F.~Korobeinik
\paper Right inverse for a~convolution operator in space of germs of analytic functions on connected subsets of $\mathbb C$
\jour Mat. Sb.
\yr 1996
\vol 187
\issue 1
\pages 55--82
\mathnet{http://mi.mathnet.ru/msb100}
\crossref{https://doi.org/10.4213/sm100}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1380204}
\zmath{https://zbmath.org/?q=an:0873.47022}
\transl
\jour Sb. Math.
\yr 1996
\vol 187
\issue 1
\pages 53--80
\crossref{https://doi.org/10.1070/SM1996v187n01ABEH000100}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1996UW03900004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030306743}


Linking options:
  • http://mi.mathnet.ru/eng/msb100
  • https://doi.org/10.4213/sm100
  • http://mi.mathnet.ru/eng/msb/v187/i1/p55

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Melikhov, SN, “Analytic solutions of convolution equations on convex sets with an obstacle in the boundary”, Mathematica Scandinavica, 86:2 (2000), 293  crossref  mathscinet  zmath  isi
    2. Michael Langenbruch, “Convolution operators on spaces of real analytic functions”, Math. Nachr, 2013, n/a  crossref  mathscinet  isi  scopus  scopus
    3. U. V. Barkina, S. N. Melikhov, “Ob operatore resheniya dlya differentsialnykh uravnenii beskonechnogo poryadka na vypuklykh mnozhestvakh”, Vladikavk. matem. zhurn., 16:4 (2014), 27–40  mathnet
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:225
    Full text:79
    References:53
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019