RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1993, Volume 184, Number 8, Pages 37–54 (Mi msb1004)  

This article is cited in 6 scientific papers (total in 6 papers)

Evolution parabolic inequalities with multivalued operators

V. S. Klimov


Abstract: Conditions are found under which the set of solutions of an evolution parabolic inequality is nonempty, compact, and connected. Included in the study is the Cauchy problem $f\in y'+Ay$, $y(\alpha)=h$ with a multivalued and monotone operator $A\colon Z^*\to Z$, where $Z$ is a nonreflexive $B$-space. Questions connected with well-posedness of the Cauchy problem and convergence of Faedo–Galërkin approximations are investigated.

Full text: PDF file (1608 kB)
References: PDF file   HTML file

English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1994, 79:2, 365–380

Bibliographic databases:

UDC: 517.9
MSC: Primary 34A12, 34A34, 34A60, 34G20; Secondary 35K30, 35K55, 49M15
Received: 21.05.1992

Citation: V. S. Klimov, “Evolution parabolic inequalities with multivalued operators”, Mat. Sb., 184:8 (1993), 37–54; Russian Acad. Sci. Sb. Math., 79:2 (1994), 365–380

Citation in format AMSBIB
\Bibitem{Kli93}
\by V.~S.~Klimov
\paper Evolution parabolic inequalities with multivalued operators
\jour Mat. Sb.
\yr 1993
\vol 184
\issue 8
\pages 37--54
\mathnet{http://mi.mathnet.ru/msb1004}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1239758}
\zmath{https://zbmath.org/?q=an:0820.34010}
\transl
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 79
\issue 2
\pages 365--380
\crossref{https://doi.org/10.1070/SM1994v079n02ABEH003505}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1994PY27400008}


Linking options:
  • http://mi.mathnet.ru/eng/msb1004
  • http://mi.mathnet.ru/eng/msb/v184/i8/p37

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Klimov V., “On the Shift Operator Along the Trajectories of Parabolic Inclusions”, Differ. Equ., 31:10 (1995), 1684–1689  mathnet  mathscinet  zmath  isi
    2. V. S. Klimov, “Bounded solutions of differential inclusions with homogeneous principal parts”, Izv. Math., 64:4 (2000), 755–776  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Klimov V., “On Differential Inclusions with Homogeneous Principal Part”, Differ. Equ., 38:10 (2002), 1472–1480  mathnet  crossref  mathscinet  zmath  isi
    4. V. S. Klimov, “Stability Theorems in the First-Order Approximation for Differential Inclusions”, Math. Notes, 76:4 (2004), 478–489  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. V. S. Klimov, “Averaging of parabolic inclusions”, Sb. Math., 195:1 (2004), 19–34  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. V. S. Klimov, “The Bohl index of a homogeneous parabolic inclusion”, Izv. Math., 75:2 (2011), 347–370  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:175
    Full text:44
    References:30
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019