RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1992, Volume 183, Number 9, Pages 29–44 (Mi msb1070)  

This article is cited in 7 scientific papers (total in 7 papers)

Manifolds with noncoinciding inductive dimensions

V. V. Fedorchuk, V. V. Filippov


Abstract: Under assumption of the continuum hypothesis, there is constructed for any $n\geqslant3$ a normal countably compact manifold $M^n$ of dimension
$$ n=\operatorname{ind}M^n=\dim M^n<\operatorname{Ind}M^n=2n-2. $$


Full text: PDF file (1531 kB)
References: PDF file   HTML file

English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1994, 77:1, 25–36

Bibliographic databases:

UDC: 515.12
MSC: Primary 54F45; Secondary 54C10, 57N99
Received: 27.05.1991

Citation: V. V. Fedorchuk, V. V. Filippov, “Manifolds with noncoinciding inductive dimensions”, Mat. Sb., 183:9 (1992), 29–44; Russian Acad. Sci. Sb. Math., 77:1 (1994), 25–36

Citation in format AMSBIB
\Bibitem{FedFil92}
\by V.~V.~Fedorchuk, V.~V.~Filippov
\paper Manifolds with noncoinciding inductive dimensions
\jour Mat. Sb.
\yr 1992
\vol 183
\issue 9
\pages 29--44
\mathnet{http://mi.mathnet.ru/msb1070}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1198833}
\zmath{https://zbmath.org/?q=an:0789.57013|0778.57013}
\transl
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 77
\issue 1
\pages 25--36
\crossref{https://doi.org/10.1070/SM1994v077n01ABEH003427}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1994MZ10900003}


Linking options:
  • http://mi.mathnet.ru/eng/msb1070
  • http://mi.mathnet.ru/eng/msb/v183/i9/p29

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Fedorchuk V., “A Differentiable Manifold with Noncoinciding Dimensions”, Topology Appl., 54:1-3 (1993), 221–239  crossref  mathscinet  zmath  isi
    2. V. V. Fedorchuk, “A differentiable manifold with non-coinciding dimensions under the continuum hypothesis”, Sb. Math., 186:1 (1995), 151–162  mathnet  crossref  mathscinet  zmath  isi
    3. Karasev A., “On the Inductive Dimension of Subset of Some Nonmetrizable Methods”, Vestn. Mosk. Univ. Seriya 1 Mat. Mekhanika, 1997, no. 5, 11–14  mathscinet  zmath  isi
    4. V. V. Fedorchuk, “The Urysohn identity and dimension of manifolds”, Russian Math. Surveys, 53:5 (1998), 937–974  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. V. V. Fedorchuk, “On some problems of topological dimension theory”, Russian Math. Surveys, 57:2 (2002), 361–398  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Kerry Richardson, Stephen Watson, “Metrisable and discrete special resolutions”, Topology and its Applications, 122:3 (2002), 605  crossref
    7. V. V. Fedorchuk, “Fully closed mappings and their applications”, J. Math. Sci., 136:5 (2006), 4201–4292  mathnet  crossref  mathscinet  zmath  elib  elib
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:242
    Full text:76
    References:33
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019