RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1992, Volume 183, Number 10, Pages 123–144 (Mi msb1083)  

This article is cited in 2 scientific papers (total in 2 papers)

On decay of a solution of the first mixed problem for the linearized system of Navier–Stokes equations in a domain with noncompact boundary

F. Kh. Mukminov


Abstract: A. K. Gushchin, V. I. Ushakov, A. F. Tedeev, and other authors have investigated how stabilization rate of solutions of mixed problems for parabolic equations of second and higher orders depends on the geometry of an unbounded domain. Here an analogous problem is considered for the linearized system of Navier–Stokes equations in a domain with noncompact boundary in three-dimensional space. Estimates are obtained for the rate of decay of a solution as $t\to\infty$, in terms of a simple geometric characteristic of the unbounded domain. These estimates coincide in form with the corresponding estimates of a solution of the first mixed problem for a parabolic equation.

Full text: PDF file (1810 kB)
References: PDF file   HTML file

English version:
Russian Academy of Sciences. Sbornik. Mathematics, 1994, 77:1, 245–264

Bibliographic databases:

UDC: 517.947
MSC: Primary 35Q30, 35B40; Secondary 35K99
Received: 20.03.1991

Citation: F. Kh. Mukminov, “On decay of a solution of the first mixed problem for the linearized system of Navier–Stokes equations in a domain with noncompact boundary”, Mat. Sb., 183:10 (1992), 123–144; Russian Acad. Sci. Sb. Math., 77:1 (1994), 245–264

Citation in format AMSBIB
\Bibitem{Muk92}
\by F.~Kh.~Mukminov
\paper On decay of a~solution of the first mixed problem for the~linearized system of Navier--Stokes equations in a~domain with noncompact boundary
\jour Mat. Sb.
\yr 1992
\vol 183
\issue 10
\pages 123--144
\mathnet{http://mi.mathnet.ru/msb1083}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1202795}
\zmath{https://zbmath.org/?q=an:0793.35073}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1994SbMat..77..245M}
\transl
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 77
\issue 1
\pages 245--264
\crossref{https://doi.org/10.1070/SM1994v077n01ABEH003438}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1994MZ10900015}


Linking options:
  • http://mi.mathnet.ru/eng/msb1083
  • http://mi.mathnet.ru/eng/msb/v183/i10/p123

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. F. Kh. Mukminov, “Of the first mixed problem for the system of Navier–Stokes equations in domains with noncompact boundaries”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 507–524  mathnet  crossref  mathscinet  zmath  isi
    2. F. Kh. Mukminov, “On uniform stabilization of solutions of the exterior problem for the Navier–Stokes equations”, Russian Acad. Sci. Sb. Math., 81:2 (1995), 297–320  mathnet  crossref  mathscinet  zmath  isi
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:174
    Full text:51
    References:30
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019