RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2006, Volume 197, Number 7, Pages 87–136 (Mi msb1117)  

This article is cited in 1 scientific paper (total in 1 paper)

Direct and inverse theorems on approximation by root functions of a regular boundary-value problem

G. V. Radzievskii

Institute of Mathematics, Ukrainian National Academy of Sciences

Abstract: One considers the spectral problem $x^{(n)}+Fx=\lambda x$ with boundary conditions $U_j(x)=0$, $j=1,…,n$, for functions $x$ on $[0,1]$. It is assumed that $F$ is a linear bounded operator from the Hölder space $C^\gamma$, $\gamma\in[0,n-1)$, into $L_1$ and the $U_j$ are bounded linear functionals on $C^{k_j}$ with $k_j\in\{0,…,n-1\}$. Let $\mathfrak P_\zeta$ be the linear span of the root functions of the problem $x^{(n)}+Fx=\lambda x$, $U_j(x)=0$, $j=1,…,n$, corresponding to the eigenvalues $\lambda_k$ with $|\lambda_k|<\zeta^n$, and let $\mathscr E_\zeta(f)_{W_p^l}:=\inf\{\|f-g\|_{W_p^l}:g\in\mathfrak P_\zeta\}$. An estimate of $\mathscr E_\zeta(f)_{W_p^l}$ is obtained in terms of the $K$-functional
$K(\zeta^{-m},f;W_p^l,W_{p,U}^{l+m})
:=\inf\{\|f-x\|_{W_p^l} +\zeta^{-m}\|x\|_{W_p^{l+m}}: x\in W_p^{l+m}, U_j(x)=0 for k_j<l+m\}$
(the direct theorem) and an estimate of this $K$-functional is obtained in terms of $\mathscr E_\xi(f)_{W_p^l}$ for $\xi\leqslant\zeta$ (the inverse theorem).
In several cases two-sided bounds of the $K$-functional are found in terms of appropriate moduli of continuity, and then the direct and the inverse theorems are stated in terms of moduli of continuity. For the spectral problem $x^{(n)}=\lambda x$ with periodic boundary conditions these results coincide with Jackson's and Bernstein's direct and inverse theorems on the approximation of functions by a trigonometric system.
Bibliography: 41 titles.

DOI: https://doi.org/10.4213/sm1117

Full text: PDF file (961 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2006, 197:7, 1037–1083

Bibliographic databases:

UDC: 517.927.6+517.518
MSC: 41A17, 34L20
Received: 27.06.2005

Citation: G. V. Radzievskii, “Direct and inverse theorems on approximation by root functions of a regular boundary-value problem”, Mat. Sb., 197:7 (2006), 87–136; Sb. Math., 197:7 (2006), 1037–1083

Citation in format AMSBIB
\Bibitem{Rad06}
\by G.~V.~Radzievskii
\paper Direct and inverse theorems on approximation by root
functions of a regular boundary-value problem
\jour Mat. Sb.
\yr 2006
\vol 197
\issue 7
\pages 87--136
\mathnet{http://mi.mathnet.ru/msb1117}
\crossref{https://doi.org/10.4213/sm1117}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2277333}
\zmath{https://zbmath.org/?q=an:1148.41012}
\elib{http://elibrary.ru/item.asp?id=9296525}
\transl
\jour Sb. Math.
\yr 2006
\vol 197
\issue 7
\pages 1037--1083
\crossref{https://doi.org/10.1070/SM2006v197n07ABEH003788}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000241860100005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33751060697}


Linking options:
  • http://mi.mathnet.ru/eng/msb1117
  • https://doi.org/10.4213/sm1117
  • http://mi.mathnet.ru/eng/msb/v197/i7/p87

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Gomilko A., Rzepnicki L., “Basis Properties in a Problem of a Nonhomogeneous String With Damping At the End”, Asymptotic Anal., 92:1-2 (2015), 107–140  crossref  mathscinet  zmath  isi
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:408
    Full text:125
    References:53
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019