RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2006, Volume 197, Number 9, Pages 3–18 (Mi msb1129)  

This article is cited in 21 scientific papers (total in 21 papers)

Monotone path-connectedness of Chebyshev sets in the space $C(Q)$

A. R. Alimov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The structure of Chebyshev sets and strict suns in the space $C(Q)$ with compact $Q$ is considered. It is shown that a boundedly compact strict sun in $C(Q)$ (in particular, a bounded compact Chebyshev set) is monotone path-connected and in particular, $P$-acyclic. It is demonstrated that a monotone path-connected Chebyshev set in $C(Q)$ is a sun.
Bibliography: 25 titles.

DOI: https://doi.org/10.4213/sm1129

Full text: PDF file (592 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2006, 197:9, 1259–1272

Bibliographic databases:

UDC: 517.982.256
MSC: Primary 41A65; Secondary 46B20
Received: 10.08.2005 and 17.05.2006

Citation: A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space $C(Q)$”, Mat. Sb., 197:9 (2006), 3–18; Sb. Math., 197:9 (2006), 1259–1272

Citation in format AMSBIB
\Bibitem{Ali06}
\by A.~R.~Alimov
\paper Monotone path-connectedness of Chebyshev sets in the space~$C(Q)$
\jour Mat. Sb.
\yr 2006
\vol 197
\issue 9
\pages 3--18
\mathnet{http://mi.mathnet.ru/msb1129}
\crossref{https://doi.org/10.4213/sm1129}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2273165}
\zmath{https://zbmath.org/?q=an:1147.41011}
\elib{http://elibrary.ru/item.asp?id=9277050}
\transl
\jour Sb. Math.
\yr 2006
\vol 197
\issue 9
\pages 1259--1272
\crossref{https://doi.org/10.1070/SM2006v197n09ABEH003797}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000243495000001}
\elib{http://elibrary.ru/item.asp?id=14649261}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846532493}


Linking options:
  • http://mi.mathnet.ru/eng/msb1129
  • https://doi.org/10.4213/sm1129
  • http://mi.mathnet.ru/eng/msb/v197/i9/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. R. Alimov, “A Monotone Path Connected Chebyshev Set Is a Sun”, Math. Notes, 91:2 (2012), 290–292  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    2. A. R. Alimov, “Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$”, J. Math. Sci., 185:3 (2012), 360–366  mathnet  crossref
    3. A. R. Alimov, V. Yu. Protasov, “Separation of convex sets by extreme hyperplanes”, J. Math. Sci., 191:5 (2013), 599–604  mathnet  crossref
    4. A. R. Alimov, “Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding”, Eurasian Math. J., 3:2 (2012), 21–30  mathnet  mathscinet  zmath
    5. A. R. Alimov, “Bounded strict solar property of strict suns in the space $C(Q)$”, Moscow University Mathematics Bulletin, 68:1 (2013), 14–17  mathnet  crossref
    6. A. R. Alimov, “Local solarity of suns in normed linear spaces”, J. Math. Sci., 197:4 (2014), 447–454  mathnet  crossref
    7. A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izv. Math., 78:4 (2014), 641–655  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. A. R. Alimov, “The Rainwater–Simons weak convergence theorem for the Brown associated norm”, Eurasian Math. J., 5:2 (2014), 126–131  mathnet
    9. A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci., 217:6 (2016), 683–730  mathnet  crossref  mathscinet
    10. A. R. Alimov, “On finite-dimensional Banach spaces in which suns are connected”, Eurasian Math. J., 6:4 (2015), 7–18  mathnet
    11. A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. I. G. Tsar'kov, “Continuous $\varepsilon$-Selection and Monotone Path-Connected Sets”, Math. Notes, 101:6 (2017), 1040–1049  mathnet  crossref  crossref  mathscinet  isi  elib
    13. A. R. Alimov, “Selections of the metric projection operator and strict solarity of sets with continuous metric projection”, Sb. Math., 208:7 (2017), 915–928  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    14. Tsar'kov I.G., “Continuous Selection From the Sets of Best and Near-Best Approximation”, Dokl. Math., 96:1 (2017), 362–364  crossref  mathscinet  zmath  isi  scopus
    15. A. R. Alimov, “A monotone path-connected set with outer radially lower continuous metric projection is a strict sun”, Siberian Math. J., 58:1 (2017), 11–15  mathnet  crossref  crossref  isi  elib  elib
    16. Alimov A.R., “On Approximative Properties of Locally Chebyshev Sets”, Proc. Inst. Math. Mech., 44:1 (2018), 36–42  isi
    17. I. G. Tsar'kov, “Continuous selections for metric projection operators and for their generalizations”, Izv. Math., 82:4 (2018), 837–859  mathnet  crossref  crossref  adsnasa  isi  elib
    18. I. G. Tsar'kov, “New Criteria for the Existence of a Continuous $\varepsilon$-Selection”, Math. Notes, 104:5 (2018), 727–734  mathnet  crossref  crossref  isi  elib
    19. A. R. Alimov, “Selections of the best and near-best approximation operators and solarity”, Proc. Steklov Inst. Math., 303 (2018), 10–17  mathnet  crossref  crossref  isi  elib
    20. I. G. Tsar'kov, “Weakly monotone sets and continuous selection from a near-best approximation operator”, Proc. Steklov Inst. Math., 303 (2018), 227–238  mathnet  crossref  crossref  isi  elib
    21. Alimov A.R., “Continuity of the Metric Projection and Local Solar Properties of Sets: Continuity of the Metric Projection and Solar Properties”, Set-Valued Var. Anal., 27:1 (2019), 213–222  crossref  mathscinet  zmath  isi  scopus
  • Математический сборник Sbornik: Mathematics (from 1967)
    Number of views:
    This page:414
    Full text:99
    References:51
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019