RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 2005, Volume 196, Number 1, Pages 3–32 (Mi msb1259)  

This article is cited in 5 scientific papers (total in 5 papers)

Antipodes and embeddings

A. Yu. Volovikov, E. V. Shchepin

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: This paper is concerned with maps without antipodal coincidence from spheres into compacta and polyhedra of a smaller dimension and to obstructions for embeddings of polyhedra and compacta in Euclidean spaces. Estimates of the dimension of the antipodal coincidence set are given for maps of spheres into compacta. The theory of the Yang homology index of spaces with involution is systematically expounded and developed in the case of a deleted square.

DOI: https://doi.org/10.4213/sm1259

Full text: PDF file (434 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 2005, 196:1, 1–28

Bibliographic databases:

UDC: 515.142.226
MSC: 55M20, 54H25, 57Q35
Received: 04.12.2003

Citation: A. Yu. Volovikov, E. V. Shchepin, “Antipodes and embeddings”, Mat. Sb., 196:1 (2005), 3–32; Sb. Math., 196:1 (2005), 1–28

Citation in format AMSBIB
\Bibitem{VolShc05}
\by A.~Yu.~Volovikov, E.~V.~Shchepin
\paper Antipodes and embeddings
\jour Mat. Sb.
\yr 2005
\vol 196
\issue 1
\pages 3--32
\mathnet{http://mi.mathnet.ru/msb1259}
\crossref{https://doi.org/10.4213/sm1259}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2141322}
\zmath{https://zbmath.org/?q=an:1077.55003}
\elib{https://elibrary.ru/item.asp?id=9135665}
\transl
\jour Sb. Math.
\yr 2005
\vol 196
\issue 1
\pages 1--28
\crossref{https://doi.org/10.1070/SM2005v196n01ABEH000870}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000229078800001}
\elib{https://elibrary.ru/item.asp?id=14532023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-18944373274}


Linking options:
  • http://mi.mathnet.ru/eng/msb1259
  • https://doi.org/10.4213/sm1259
  • http://mi.mathnet.ru/eng/msb/v196/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Yu. Volovikov, “Coincidence points of maps of $\mathbb Z_p^n$-spaces”, Izv. Math., 69:5 (2005), 913–962  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    2. R. N. Karasev, “Topological methods in combinatorial geometry”, Russian Math. Surveys, 63:6 (2008), 1031–1078  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    3. R. N. Karasev, “Theorems of Borsuk-Ulam type for flats and common transversals of families of convex compact sets”, Sb. Math., 200:10 (2009), 1453–1471  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Proc. Steklov Inst. Math., 266 (2009), 142–176  mathnet  crossref  mathscinet  zmath  isi  elib
    5. Roman N. Karasev, “A topological central point theorem”, Topology and its Applications, 2011  crossref  mathscinet  isi
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:386
    Full text:164
    References:49
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020