RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1996, Volume 187, Number 5, Pages 59–64 (Mi msb127)  

This article is cited in 3 scientific papers (total in 3 papers)

Topology of domains of possible motions of integrable systems

V. V. Kozlov, V. V. Ten

M. V. Lomonosov Moscow State University

Abstract: A study is made of analytic invertible systems with two degrees of freedom on a fixed three-dimensional manifold of level of the energy integral. It is assumed that the manifold in question is compact and has no singular points (equilibria of the initial system). The natural projection of the energy manifold onto the two-dimensional configuration space is called the domain of possible motion. In the orientable case it is sphere with $k$ holes and $p$ attached handles. It is well known that for $k=0$ and $p\geqslant 2$, the system possesses no non-constant analytic integrals on the corresponding level of the energy integral. The situation in the case of domains of possible motions with a boundary turns out to be very different. The main result can be stated as follows: there are examples of analytically integrable systems with arbitrary values of $p$ and $k\geqslant 1$.

DOI: https://doi.org/10.4213/sm127

Full text: PDF file (197 kB)
References: PDF file   HTML file

English version:
Sbornik: Mathematics, 1996, 187:5, 679–684

Bibliographic databases:

UDC: 517.9+531.01
MSC: Primary 58F05; Secondary 70G25, 70F10
Received: 03.10.1995

Citation: V. V. Kozlov, V. V. Ten, “Topology of domains of possible motions of integrable systems”, Mat. Sb., 187:5 (1996), 59–64; Sb. Math., 187:5 (1996), 679–684

Citation in format AMSBIB
\Bibitem{KozTen96}
\by V.~V.~Kozlov, V.~V.~Ten
\paper Topology of domains of possible motions of integrable systems
\jour Mat. Sb.
\yr 1996
\vol 187
\issue 5
\pages 59--64
\mathnet{http://mi.mathnet.ru/msb127}
\crossref{https://doi.org/10.4213/sm127}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1400352}
\zmath{https://zbmath.org/?q=an:0871.58043}
\transl
\jour Sb. Math.
\yr 1996
\vol 187
\issue 5
\pages 679--684
\crossref{https://doi.org/10.1070/SM1996v187n05ABEH000127}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1996VK60300003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030497053}


Linking options:
  • http://mi.mathnet.ru/eng/msb127
  • https://doi.org/10.4213/sm127
  • http://mi.mathnet.ru/eng/msb/v187/i5/p59

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bolotin, SV, “A variational construction of chaotic trajectories for a Hamiltonian system on a torus”, Bollettino Della Unione Matematica Italiana, 1B:3 (1998), 541  mathscinet  zmath  isi
    2. Bertotti, ML, “Chaotic trajectories for natural systems on a torus”, Discrete and Continuous Dynamical Systems, 9:5 (2003), 1343  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    3. Rudnev, M, “Integrability versus topology of configuration manifolds and domains of possible motions”, Archiv der Mathematik, 86:1 (2006), 90  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
  • Математический сборник - 1992–2005 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:348
    Full text:113
    References:57
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020