Matematicheskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Sb., 1991, Volume 182, Number 1, Pages 36–54 (Mi msb1273)  

This article is cited in 8 scientific papers (total in 8 papers)

Symplectic geometry and conditions necessary conditions for optimality

A. A. Agrachev, R. V. Gamkrelidze


Abstract: With the help of a symplectic technique the concept of a field of extremals in the classical calculus of variations is generalized to optimal control problems. This enables us to get new optimality conditions that are equally suitable for regular, bang-bang, and singular extremals. Special attention is given to systems of the form $\dot x=f_0(x)+uf_1(x)$ with a scalar control. New pointwise conditions for optimality and sufficient conditions for local controllability are obtained as a consequence of the general theory.

Full text: PDF file (1977 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Sbornik, 1992, 72:1, 29–45

Bibliographic databases:

UDC: 517.97
MSC: 49K15, 58F05
Received: 05.03.1990

Citation: A. A. Agrachev, R. V. Gamkrelidze, “Symplectic geometry and conditions necessary conditions for optimality”, Mat. Sb., 182:1 (1991), 36–54; Math. USSR-Sb., 72:1 (1992), 29–45

Citation in format AMSBIB
\Bibitem{AgrGam91}
\by A.~A.~Agrachev, R.~V.~Gamkrelidze
\paper Symplectic geometry and conditions necessary conditions for optimality
\jour Mat. Sb.
\yr 1991
\vol 182
\issue 1
\pages 36--54
\mathnet{http://mi.mathnet.ru/msb1273}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1098838}
\zmath{https://zbmath.org/?q=an:0776.49014|0729.49018}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1992SbMat..72...29A}
\transl
\jour Math. USSR-Sb.
\yr 1992
\vol 72
\issue 1
\pages 29--45
\crossref{https://doi.org/10.1070/SM1992v072n01ABEH002137}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1992JF72300002}


Linking options:
  • http://mi.mathnet.ru/eng/msb1273
  • http://mi.mathnet.ru/eng/msb/v182/i1/p36

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Pukhlikov A., “The Poisson Theorem in Optimal-Control Problems”, Differ. Equ., 29:11 (1993), 1685–1690  mathnet  mathscinet  zmath  isi
    2. Pllkhlikov A., “The Geometry of Discontinuous Systems Near an Elliptic Singularity”, Differ. Equ., 35:11 (1999), 1516–1529  mathnet  mathscinet  isi
    3. Pukhlikov A., “A Gauss-Ostrogradskii Theorem for Integral Transforms Over the Euler Characteristic - to the Memory of Professor Anatolii Platonovich Prudnikov”, Integral Transform. Spec. Funct., 9:4 (2000), 299–312  crossref  mathscinet  zmath  isi
    4. Pukhlikov A., “The Geometry of Discontinuous Systems Near a Hyperbolic Singular Point of the Sliding Field”, Differ. Equ., 37:3 (2001), 377–400  mathnet  crossref  mathscinet  zmath  isi
    5. Eduardo Martínez, “Reduction in optimal control theory”, Reports on Mathematical Physics, 53:1 (2004), 79  crossref  mathscinet  zmath
    6. Pukhlikov A., “Geometry of Discontinuous Systems Near a Manifold of Singularities of Third Order”, Differ. Equ., 41:12 (2005), 1710–1716  mathnet  crossref  mathscinet  zmath  isi  elib
    7. V. F. Borisov, “Kelley Condition and Structure of Lagrange Manifold in a Neighborhood of a First-Order Singular Extremal”, Journal of Mathematical Sciences, 151:6 (2008), 3431–3472  mathnet  crossref  mathscinet  zmath  elib
    8. A. A. Agrachev, R. V. Gamkrelidze, “The Pontryagin Maximum Principle 50 years later”, Proc. Steklov Inst. Math. (Suppl.), 253, suppl. 1 (2006), S4–S12  mathnet  crossref  mathscinet  zmath  elib
  • Математический сборник - 1991 Sbornik: Mathematics (from 1967)
    Number of views:
    This page:525
    Full text:145
    References:44
    First page:4

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021